天天看點

torch04:全連接配接神經網絡--MNIST識别和自己資料集

本小節使用torch搭建線性回歸模型,訓練和測試:

(1)定義模型超參數:輸入大小、隐含層、輸出、疊代次數、批量大小、學習率。

(2)定義訓練資料,加餐部分是使用自己的資料集:(可參考:https://blog.csdn.net/u014365862/article/details/80506147)

(3)定義模型(定義全連接配接神經網絡)。

(4)定義損失函數,選用适合的損失函數。

(5)定義優化算法(SGD、Adam等)。

(6)儲存模型。

---------------------------------我是可愛的分割線---------------------------------

代碼部分:

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms


# 判定GPU是否存在
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定義超參數
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# 手寫體資料
train_dataset = torchvision.datasets.MNIST(root='./data', 
                                           train=True, 
                                           transform=transforms.ToTensor(),  
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='./data', 
                                          train=False, 
                                          transform=transforms.ToTensor())

# 建構資料管道, 使用自己的資料集請參考:https://blog.csdn.net/u014365862/article/details/80506147  
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                          batch_size=batch_size, 
                                          shuffle=False)

# 定義含有一個隐含層的全連接配接神經網絡。
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size) 
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  
    
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 定義模型
model = NeuralNet(input_size, hidden_size, num_classes).to(device)

# 損失函數和優化算法
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  

# 訓練模型
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):  
        # Move tensors to the configured device
        images = images.reshape(-1, 28*28).to(device)
        labels = labels.to(device)
        
        # 前向傳播和計算loss
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 後向傳播和調整參數
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每100個batch列印一次資料
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 模型測試部分
# 測試階段不需要計算梯度,注意
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28*28).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))

# 儲存模型參數
torch.save(model.state_dict(), 'model.ckpt')           

複制

加餐:在自己資料集上使用:

其中,train.txt中的資料格式:

gender/0male/0(2).jpg 1

gender/0male/0(3).jpeg 1

gender/0male/0(1).jpg 0

test.txt中的資料格式如下:

gender/0male/0(3).jpeg 1

gender/0male/0(1).jpg 0

gender/1female/1(6).jpg 1

代碼部分:

# coding=utf-8
import torch
import torch.nn as nn
import torchvision
from torch.utils.data import Dataset, DataLoader  
from torchvision import transforms, utils  
from PIL import Image


# 判定GPU是否存在
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 定義超參數
input_size = 784*3
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 16
learning_rate = 0.001

def default_loader(path):  
    # 注意要保證每個batch的tensor大小時候一樣的。  
    return Image.open(path).convert('RGB')  
  
class MyDataset(Dataset):  
    def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):  
        fh = open(txt, 'r')  
        imgs = []  
        for line in fh:  
            line = line.strip('\n')  
            # line = line.rstrip()  
            words = line.split(' ')  
            imgs.append((words[0],int(words[1])))  
        self.imgs = imgs  
        self.transform = transform  
        self.target_transform = target_transform  
        self.loader = loader  
      
    def __getitem__(self, index):  
        fn, label = self.imgs[index]  
        img = self.loader(fn)  
        if self.transform is not None:  
            img = self.transform(img)  
        return img,label  
      
    def __len__(self):  
        return len(self.imgs)  
  
def get_loader(dataset='train.txt', crop_size=128, image_size=28, batch_size=2, mode='train', num_workers=1):  
    """Build and return a data loader."""  
    transform = []  
    if mode == 'train':  
        transform.append(transforms.RandomHorizontalFlip())  
    transform.append(transforms.CenterCrop(crop_size))  
    transform.append(transforms.Resize(image_size))  
    transform.append(transforms.ToTensor())  
    transform.append(transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))  
    transform = transforms.Compose(transform)  
    train_data=MyDataset(txt=dataset, transform=transform)  
    data_loader = DataLoader(dataset=train_data,  
                                  batch_size=batch_size,  
                                  shuffle=(mode=='train'),  
                                  num_workers=num_workers)  
    return data_loader  
# 注意要保證每個batch的tensor大小時候一樣的。  
# data_loader = DataLoader(train_data, batch_size=2,shuffle=True)  
train_loader = get_loader('train.txt', batch_size=batch_size)  
print(len(train_loader))  
test_loader = get_loader('test.txt', batch_size=batch_size)  
print(len(test_loader))  

# 定義含有一個隐含層的全連接配接神經網絡。
class NeuralNet(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(NeuralNet, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size) 
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  
    
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 定義模型
model = NeuralNet(input_size, hidden_size, num_classes).to(device)

# 損失函數和優化算法
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)  

# 訓練模型
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):  
        # Move tensors to the configured device
        images = images.reshape(-1, 28*28*3).to(device)
        labels = labels.to(device)
        # print (images, labels)
        
        # 前向傳播和計算loss
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 後向傳播和調整參數
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每100個batch列印一次資料
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 模型測試部分
# 測試階段不需要計算梯度,注意
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28*28*3).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))

# 儲存模型參數
torch.save(model.state_dict(), 'model.ckpt')           

複制

總結:

加餐部分加入:在自己資料集上使用torch,是不是猶如畫龍點睛的一筆,可以訓練自己的很多分類模型,剩下的部分主要在搭模組化型了,後面我們慢慢搞起來。

上面加餐部分需要生成自己的txt檔案(資料+标簽),可以參考這個,自己以前調試用的:https://github.com/MachineLP/py_workSpace/blob/master/g_img_path.py

torch系列:

1. torch01:torch基礎

2. torch02:logistic regression--MNIST識别

3. torch03:linear_regression