class_pr.pkl 包括召回率(Recall),精确率(Precision),平均正确率(Average_precision(AP) )
在Spyer中敲入如下代碼即可打開,在變量欄檢視具體數值(本文隻對一類目标進行檢測)
import cPickle as pickle
f = open('ship_pr.pkl')
info = pickle.load(f)
下面是使用detections.pkl畫框,裡面包括的是list,list裡包含兩個list,坐标值在第二個list裡
import os
import os.path
import numpy as np
import xml.etree.ElementTree as xmlET
from PIL import Image, ImageDraw
import cPickle as pickle
f = open('ship_pr.pkl')
ship_pr = pickle.load(f)
test_file = 'test.txt'
file_path_img = 'JPEGImages'
save_file_path = 'pkl/results'
with open(test_file) as f:
image_index = [x.strip() for x in f.readlines()]
f = open('detections.pkl')
info = pickle.load(f)
dets = info[]
num =
for idx in xrange(len(dets)):
if len(dets[idx]) == :
continue
img = Image.open(os.path.join(file_path_img, image_index[idx] + '.jpg'))
draw = ImageDraw.Draw(img)
for i in xrange(len(dets[idx])):
box = dets[idx][i]
draw.rectangle([int(np.round(float(box[]))), int(np.round(float(box[]))),
int(np.round(float(box[]))), int(np.round(float(box[])))], outline=(, , ))
img.save(os.path.join(save_file_path, image_index[idx] + '.jpg'))