1.資料檢視和轉置
import numpy as np
import pandas as pd
# 導入numpy、pandas子產品
# 資料檢視、轉置
df = pd.DataFrame(np.random.rand(16).reshape(8,2)*100,
columns = [\'a\',\'b\'])
print(df.head(2)) #檢視前兩條資料
print(df.tail())
# .head()檢視頭部資料
# .tail()檢視尾部資料
# 預設檢視5條
print(df.T)
# .T 轉置
輸出結果:
a b
0 64.231620 24.222954
1 3.004779 92.549576
a b
3 54.787062 17.264577
4 13.106864 5.500618
5 8.631310 79.109355
6 22.107241 94.901685
7 29.034599 54.156278
0 1 2 3 4 5 \
a 64.231620 3.004779 25.002825 54.787062 13.106864 8.631310
b 24.222954 92.549576 87.818090 17.264577 5.500618 79.109355
6 7
a 22.107241 29.034599
b 94.901685 54.156278
2.(1)添加與修改_1
# 添加與修改
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
columns = [\'a\',\'b\',\'c\',\'d\'])
print(df)
df[\'e\'] = 10
df.loc[4] = 20
print(df)
# 新增列/行并指派
df[\'e\'] = 20
df[[\'a\',\'c\']] = 100
print(df)
# 索引後直接修改值
#注意:不能同時添加兩列,否則會報錯,如:df[[\'f\',\'g\']] = 200 ,必須一列一列的添加
輸出結果:
a b c d
0 14.342082 52.604100 26.561995 60.441731
1 20.331108 43.537490 1.020098 7.171418
2 35.226542 9.573718 99.273254 0.867227
3 47.511549 56.783730 47.580639 67.007725
a b c d e
0 14.342082 52.604100 26.561995 60.441731 10
1 20.331108 43.537490 1.020098 7.171418 10
2 35.226542 9.573718 99.273254 0.867227 10
3 47.511549 56.783730 47.580639 67.007725 10
4 20.000000 20.000000 20.000000 20.000000 20
a b c d e
0 100 52.604100 100 60.441731 20
1 100 43.537490 100 7.171418 20
2 100 9.573718 100 0.867227 20
3 100 56.783730 100 67.007725 20
4 100 20.000000 100 20.000000 20
(2)添加與修改_2
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
columns = [\'a\',\'b\',\'c\',\'d\'])
df.iloc[0] = 100
print(df)
df.iloc[0] = [1,2,3,4]
print(df)
#增加一行盡量曲用loc去增加,iloc是不能增加的,會報錯
df.loc[5] = 100
print(df)
輸出結果:
a b c d
0 100.000000 100.000000 100.000000 100.000000
1 93.941010 7.951216 77.744847 66.842114
2 72.795874 40.031626 22.842638 92.876458
3 40.474858 53.663771 48.452597 66.444382
a b c d
0 1.000000 2.000000 3.000000 4.000000
1 93.941010 7.951216 77.744847 66.842114
2 72.795874 40.031626 22.842638 92.876458
3 40.474858 53.663771 48.452597 66.444382
a b c d
0 1.000000 2.000000 3.000000 4.000000
1 93.941010 7.951216 77.744847 66.842114
2 72.795874 40.031626 22.842638 92.876458
3 40.474858 53.663771 48.452597 66.444382
5 100.000000 100.000000 100.000000 100.000000
3.删除
(1)
# 删除 del / drop()
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
columns = [\'a\',\'b\',\'c\',\'d\'])
print(df)
del df[\'a\']
print(df)
print(\'-----\')
# del語句 - 删除列
#注意:删除行的時候不能用del df.loc[index]或者df.iloc[index] 否則會報錯 可以變相的删除 如删除第一行 可令df = df.iloc[1:]
print(df.drop(0))
print(df.drop([1,2]))
print(df)
print(\'-----\')
# drop()删除行,inplace=False → 删除後生成新的資料,不改變原資料
print(df.drop([\'d\'], axis = 1)) #axis =0 的時候删除行
print(df)
# drop()删除列,需要加上axis = 1,inplace=False → 删除後生成新的資料,不改變原資料
輸出結果:
a b c d
0 71.238538 6.121303 77.988034 44.047009
1 34.018365 78.192855 50.467246 81.162337
2 86.311980 44.341469 49.789445 35.657665
3 78.073272 31.457479 74.385014 24.655976
b c d
0 6.121303 77.988034 44.047009
1 78.192855 50.467246 81.162337
2 44.341469 49.789445 35.657665
3 31.457479 74.385014 24.655976
-----
b c d
1 78.192855 50.467246 81.162337
2 44.341469 49.789445 35.657665
3 31.457479 74.385014 24.655976
b c d
0 6.121303 77.988034 44.047009
3 31.457479 74.385014 24.655976
b c d
0 6.121303 77.988034 44.047009
1 78.192855 50.467246 81.162337
2 44.341469 49.789445 35.657665
3 31.457479 74.385014 24.655976
-----
b c
0 6.121303 77.988034
1 78.192855 50.467246
2 44.341469 49.789445
3 31.457479 74.385014
b c d
0 6.121303 77.988034 44.047009
1 78.192855 50.467246 81.162337
2 44.341469 49.789445 35.657665
3 31.457479 74.385014 24.655976
(2)
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
columns = [\'a\',\'b\',\'c\',\'d\'])
print(df.drop(0))
print(df) #源資料不會改變
print(df.drop(0,inplace = True)) #這個方法改變了源資料,并不生成新的值了,是以輸出為空
print(df) #有inplace 參數的時候就替換了源資料
輸出結果:
a b c d
1 78.187118 19.237655 94.443127 67.466532
2 37.921956 84.157197 23.311418 24.128222
3 12.330334 6.034799 62.023747 28.034041
a b c d
0 60.558857 94.367826 88.690379 33.957380
1 78.187118 19.237655 94.443127 67.466532
2 37.921956 84.157197 23.311418 24.128222
3 12.330334 6.034799 62.023747 28.034041
None
a b c d
1 78.187118 19.237655 94.443127 67.466532
2 37.921956 84.157197 23.311418 24.128222
3 12.330334 6.034799 62.023747 28.034041
4.對齊
# 對齊
df1 = pd.DataFrame(np.random.randn(10, 4), columns=[\'A\', \'B\', \'C\', \'D\'])
df2 = pd.DataFrame(np.random.randn(7, 3), columns=[\'A\', \'B\', \'C\'])
print(df1)
print(df2)
print(df1 + df2) #有共同的列名和共同的标簽的話 就會相加 。沒有共同的部分就會變為空值。任何值和空值進行運算都會變為空值
# DataFrame對象之間的資料自動按照列和索引(行标簽)對齊 ,
輸出結果:
A B C D
0 -1.528903 0.519125 -0.214881 -0.591775
1 -0.334501 -0.837666 0.568927 -0.599237
2 0.753145 0.569262 -1.181976 1.225363
3 -0.177136 -0.367530 0.382826 1.447591
4 0.215967 -0.612947 0.844906 0.130414
5 0.414375 -0.207225 0.140776 1.086686
6 0.008855 2.873956 -0.650806 -2.631485
7 -0.634085 0.625107 0.046198 -0.352343
8 0.646812 0.928476 0.519168 -0.644997
9 -0.697006 -0.178875 0.856392 -0.512101
A B C
0 -0.373297 0.607873 0.120016
1 0.343563 -2.901778 -0.370051
2 0.428568 0.319359 -3.263585
3 1.042845 -0.314763 -0.198816
4 0.071258 -0.484855 0.563127
5 -2.270312 -0.145558 0.931203
6 2.493652 -0.232491 -0.216451
A B C D
0 -1.902200 1.126998 -0.094865 NaN
1 0.009061 -3.739444 0.198876 NaN
2 1.181713 0.888620 -4.445561 NaN
3 0.865710 -0.682293 0.184010 NaN
4 0.287224 -1.097802 1.408034 NaN
5 -1.855938 -0.352783 1.071979 NaN
6 2.502507 2.641465 -0.867257 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN
6.排序
(1)按值排序
# 排序1 - 按值排序 .sort_values
# 同樣适用于Series
df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
columns = [\'a\',\'b\',\'c\',\'d\'])
print(df1)
print(df1.sort_values([\'a\'], ascending = True)) # 升序
#也可以這樣寫:print(df1.sort_values(by = \'a\',ascending = True))
print(df1.sort_values([\'a\'], ascending = False)) # 降序
print(\'------\')
# ascending參數:設定升序降序,預設升序
# 單列排序
df2 = pd.DataFrame({\'a\':[1,1,1,1,2,2,2,2],
\'b\':list(range(8)),
\'c\':list(range(8,0,-1))})
print(df2)
print(df2.sort_values([\'a\',\'c\']))
# 多列排序,按列順序排序
# 注意inplace參數
輸出結果:
a b c d
0 28.598118 8.037050 51.856085 45.859414
1 91.412263 59.797819 27.912198 6.996883
2 92.001255 76.467245 76.524894 33.463836
3 47.054750 37.376781 94.286800 53.429360
a b c d
0 28.598118 8.037050 51.856085 45.859414
3 47.054750 37.376781 94.286800 53.429360
1 91.412263 59.797819 27.912198 6.996883
2 92.001255 76.467245 76.524894 33.463836
a b c d
2 92.001255 76.467245 76.524894 33.463836
1 91.412263 59.797819 27.912198 6.996883
3 47.054750 37.376781 94.286800 53.429360
0 28.598118 8.037050 51.856085 45.859414
------
a b c
0 1 0 8
1 1 1 7
2 1 2 6
3 1 3 5
4 2 4 4
5 2 5 3
6 2 6 2
7 2 7 1
a b c
3 1 3 5
2 1 2 6
1 1 1 7
0 1 0 8
7 2 7 1
6 2 6 2
5 2 5 3
4 2 4 4
(2)索引排序
# 排序2 - 索引排序 .sort_index
df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
index = [5,4,3,2],
columns = [\'a\',\'b\',\'c\',\'d\'])
df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
index = [\'h\',\'s\',\'x\',\'g\'],
columns = [\'a\',\'b\',\'c\',\'d\'])
print(df1)
print(df1.sort_index())
print(df2)
print(df2.sort_index())
# 按照index排序
# 預設 ascending=True, inplace=False
輸出結果:
a b c d
5 80.932585 71.991854 64.582943 23.443231
4 82.054030 87.459058 12.108433 83.047490
3 56.329863 14.926822 47.884418 59.880352
2 0.347007 69.794103 74.375345 12.736429
a b c d
2 0.347007 69.794103 74.375345 12.736429
3 56.329863 14.926822 47.884418 59.880352
4 82.054030 87.459058 12.108433 83.047490
5 80.932585 71.991854 64.582943 23.443231
a b c d
h 53.041921 93.834097 13.423132 82.702020
s 0.003814 75.721426 73.086606 20.597472
x 32.678307 58.369155 70.487505 24.833117
g 46.232889 19.365147 9.872537 98.246438
a b c d
g 46.232889 19.365147 9.872537 98.246438
h 53.041921 93.834097 13.423132 82.702020
s 0.003814 75.721426 73.086606 20.597472
x 32.678307 58.369155 70.487505 24.833117
(3)
df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
index = [5,4,3,2],
columns = [\'a\',\'b\',\'c\',\'d\'])
print(df1)
print(df1.sort_index())
print(df1) # df1并沒有變
print(df1.sort_index(inplace = True))
print(df1) # df1發生改變
輸出結果:
a b c d
5 45.004735 23.449962 52.756124 60.237141
4 74.945903 63.813663 29.937821 66.420415
3 45.737208 82.376775 80.615108 40.479094
2 41.743173 82.013411 83.372130 76.195150
a b c d
2 41.743173 82.013411 83.372130 76.195150
3 45.737208 82.376775 80.615108 40.479094
4 74.945903 63.813663 29.937821 66.420415
5 45.004735 23.449962 52.756124 60.237141
a b c d
5 45.004735 23.449962 52.756124 60.237141
4 74.945903 63.813663 29.937821 66.420415
3 45.737208 82.376775 80.615108 40.479094
2 41.743173 82.013411 83.372130 76.195150
None
a b c d
2 41.743173 82.013411 83.372130 76.195150
3 45.737208 82.376775 80.615108 40.479094
4 74.945903 63.813663 29.937821 66.420415
5 45.004735 23.449962 52.756124 60.237141
練習:
作業1:建立一個3*3,值在0-100區間随機值的Dataframe(如圖),分别按照index和第二列值大小,降序排序

import numpy as np
import pandas as pd
#練習1
# df = pd.DataFrame(np.random.rand(9).reshape(3,3)*100,
# index=[\'a\',\'b\',\'c\'],
# columns=[\'v1\',\'v2\',\'v3\'])
# print(df)
#
# print(df.sort_index())
# df.sort_values(by = \'v2\',ascending= False,inplace = True)
# print(df)
作業2:建立一個5*2,值在0-100區間随機值的Dataframe(如圖)df1,通過修改得到df2
#練習2
# df1 = pd.DataFrame(np.random.rand(10).reshape(5,2)*100,
# index=[\'a\',\'b\',\'c\',\'d\',\'e\'],
# columns=[\'v1\',\'v2\'])
# print(df1)
# print(df1.drop([\'e\'],axis = 0).T)
作業3:如圖建立Series,并按照要求修改得到結果
#練習3
df2 = pd.Series(np.arange(10),index= [\'a\',\'b\',\'c\',\'d\',\'e\',\'f\',\'g\',\'h\',\'i\',\'j\'])
print(df2)
df2.loc[[\'a\',\'e\',\'f\']] = 100
print(df2)
#或者
# df2.iloc[0] = 100
# df2.iloc[3] = 100
# df2.iloc[4] = 100