
-
思路
我們讓一棵樹不動,讓另一棵樹加到上面去。并且要求兩者需要同步周遊相同的位置。為了保持順序,統一采用前序周遊。
寫代碼的時候又是直接新定義一個樹,但是這樣寫出來判斷比較多,導緻耗時會更長。
// 建立一棵新樹
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if (root1 == null && root2 == null) {
return null;
}
// 中
if (root1 != null && root2 == null) {
TreeNode node = new TreeNode(root1.val);
// 左
node.left = mergeTrees(root1.left, null);
// 右
node.right = mergeTrees(root1.right, null);
return node;
}
if (root1 == null && root2 != null) {
TreeNode node = new TreeNode(root2.val);
// 左
node.left = mergeTrees(null, root2.left);
// 右
node.right = mergeTrees(null, root2.right);
return node;
}
// if (root1 != null && root2 != null) {
// TreeNode node = new TreeNode(root1.val + root2.val);
// // 左
// node.left = mergeTrees(root1.left, root2.left);
// // 右
// node.right = mergeTrees(root1.right, root2.right);
// }
TreeNode node = new TreeNode(root1.val + root2.val);
// 左
node.left = mergeTrees(root1.left, root2.left);
// 右
node.right = mergeTrees(root1.right, root2.right);
return node;
}
}
// 參考代碼,精簡版
class Solution {
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if (root1 == null) {
return root2;
}
if (root2 == null) {
return root1;
}
TreeNode node = new TreeNode(0);
node.val = root1.val + root2.val;
node.left = mergeTrees(root1.left, root2.left);
node.right = mergeTrees(root1.right, root2.right);
return node;
}
}