天天看點

bp神經網絡_JAVA實作BP神經網絡算法

點選上方藍色字型,選擇“标星公衆号”

優質文章,第一時間送達

66套java從入門到精通實戰課程分享

  作者 | MrZhaoyx

來源 | cnblogs.com/MrZhaoyx/p/13271832.html

工作中需要預測一個過程的時間,就想到了使用BP神經網絡來進行預測。

簡介

BP神經網絡(Back Propagation Neural Network)是一種基于BP算法的人工神經網絡,其使用BP算法進行權值與門檻值的調整。在20世紀80年代,幾位不同的學者分别開發出了用于訓練多層感覺機的反向傳播算法,David Rumelhart和James McClelland提出的反向傳播算法是最具影響力的。其包含BP的兩大主要過程,即工作信号的正向傳播與誤差信号的反向傳播,分别負責了神經網絡中輸出的計算與權值和門檻值更新。工作信号的正向傳播是通過計算得到BP神經網絡的實際輸出,誤差信号的反向傳播是由後往前逐層修正權值與門檻值,為了使實際輸出更接近期望輸出。

(1)工作信号正向傳播。輸入信号從輸入層進入,通過突觸進入隐含層神經元,經傳遞函數運算後,傳遞到輸出層,并且在輸出層計算出輸出信号傳出。當工作信号正向傳播時,權值與門檻值固定不變,神經網絡中每層的狀态隻與前一層的淨輸出、權值和門檻值有關。若正向傳播在輸出層獲得到期望的輸出,則學習結束,并保留目前的權值與門檻值;若正向傳播在輸出層得不到期望的輸出,則在誤差信号的反向傳播中修正權值與門檻值。

(2)誤差信号反向傳播。在工作信号正向傳播後若得不到期望的輸出,則通過計算誤差信号進行反向傳播,通過計算BP神經網絡的實際輸出與期望輸出之間的內插補點作為誤差信号,并且由神經網絡的輸出層,逐層向輸入層傳播。在此過程中,每向前傳播一層,就對該層的權值與門檻值進行修改,由此一直向前傳播直至輸入層,該過程是為了使神經網絡的結果與期望的結果更相近。

當進行一次正向傳播和反向傳播後,若誤差仍不能達到要求,則該過程繼續下去,直至誤差滿足精度,或者滿足疊代次數等其他設定的結束條件。

推導請見 https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E7%AE%97%E6%B3%95

BPNN結構

該BPNN為單輸入層單隐含層單輸出層結構

項目結構

bp神經網絡_JAVA實作BP神經網絡算法
  • ActivationFunction:激活函數的接口
  • BPModel:BP模型實體類
  • BPNeuralNetworkFactory:BP神經網絡工廠,包括訓練BP神經網絡,計算,序列化等功能
  • BPParameter:BP神經網絡參數實體類
  • Matrix:矩陣實體類
  • Sigmoid:Sigmoid傳輸函數,實作了ActivationFunction接口

實作代碼

Matrix實體類

模拟了矩陣的基本運算方法。

import java.io.Serializable;

public class Matrix implements Serializable {
    private double[][] matrix;
    //矩陣列數
    private int matrixColNums;
    //矩陣行數
    private int matrixRowNums;

    /**
     * 構造一個空矩陣
     */
    public Matrix() {
        this.matrix = null;
        this.matrixColNums = 0;
        this.matrixRowNums = 0;
    }

    /**
     * 構造一個matrix矩陣
     * @param matrix
     */
    public Matrix(double[][] matrix) {
        this.matrix = matrix;
        this.matrixRowNums = matrix.length;
        this.matrixColNums = matrix[0].length;
    }

    /**
     * 構造一個rowNums行colNums列值為0的矩陣
     * @param rowNums
     * @param colNums
     */
    public Matrix(int rowNums,int colNums) {
        double[][] matrix = new double[rowNums][colNums];
        for (int i = 0; i < rowNums; i++) {
            for (int j = 0; j < colNums; j++) {
                matrix[i][j] = 0;
            }
        }
        this.matrix = matrix;
        this.matrixRowNums = rowNums;
        this.matrixColNums = colNums;
    }

    /**
     * 構造一個rowNums行colNums列值為val的矩陣
     * @param val
     * @param rowNums
     * @param colNums
     */
    public Matrix(double val,int rowNums,int colNums) {
        double[][] matrix = new double[rowNums][colNums];
        for (int i = 0; i < rowNums; i++) {
            for (int j = 0; j < colNums; j++) {
                matrix[i][j] = val;
            }
        }
        this.matrix = matrix;
        this.matrixRowNums = rowNums;
        this.matrixColNums = colNums;
    }

    public double[][] getMatrix() {
        return matrix;
    }

    public void setMatrix(double[][] matrix) {
        this.matrix = matrix;
        this.matrixRowNums = matrix.length;
        this.matrixColNums = matrix[0].length;
    }

    public int getMatrixColNums() {
        return matrixColNums;
    }

    public int getMatrixRowNums() {
        return matrixRowNums;
    }

    /**
     * 擷取矩陣指定位置的值
     *
     * @param x
     * @param y
     * @return
     */
    public double getValOfIdx(int x, int y) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        if (x > matrixRowNums - 1) {
            throw new Exception("索引x越界");
        }
        if (y > matrixColNums - 1) {
            throw new Exception("索引y越界");
        }
        return matrix[x][y];
    }

    /**
     * 擷取矩陣指定行
     *
     * @param x
     * @return
     */
    public Matrix getRowOfIdx(int x) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        if (x > matrixRowNums - 1) {
            throw new Exception("索引x越界");
        }
        double[][] result = new double[1][matrixColNums];
        result[0] = matrix[x];
        return new Matrix(result);
    }

    /**
     * 擷取矩陣指定列
     *
     * @param y
     * @return
     */
    public Matrix getColOfIdx(int y) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        if (y > matrixColNums - 1) {
            throw new Exception("索引y越界");
        }
        double[][] result = new double[matrixRowNums][1];
        for (int i = 0; i < matrixRowNums; i++) {
            result[i][1] = matrix[i][y];
        }
        return new Matrix(result);
    }

    /**
     * 矩陣乘矩陣
     *
     * @param a
     * @return
     * @throws Exception
     */
    public Matrix multiple(Matrix a) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        if (a.getMatrix() == null) {
            throw new Exception("參數矩陣為空");
        }
        if (matrixColNums != a.getMatrixRowNums()) {
            throw new Exception("矩陣緯度不同,不可計算");
        }
        double[][] result = new double[matrixRowNums][a.getMatrixColNums()];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < a.getMatrixColNums(); j++) {
                for (int k = 0; k < matrixColNums; k++) {
                    result[i][j] = result[i][j] + matrix[i][k] * a.getMatrix()[k][j];
                }
            }
        }
        return new Matrix(result);
    }

    /**
     * 二維數組乘一個數字
     *
     * @param a
     * @return
     */
    public Matrix multiple(double a) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        double[][] result = new double[matrixRowNums][matrixColNums];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[i][j] = matrix[i][j] * a;
            }
        }
        return new Matrix(result);
    }

    /**
     * 矩陣點乘
     *
     * @param a
     * @return
     */
    public Matrix pointMultiple(Matrix a) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        if (a.getMatrix() == null) {
            throw new Exception("參數矩陣為空");
        }
        if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) {
            throw new Exception("矩陣緯度不同,不可計算");
        }
        double[][] result = new double[matrixRowNums][matrixColNums];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[i][j] = matrix[i][j] * a.getMatrix()[i][j];
            }
        }
        return new Matrix(result);
    }

    /**
     * 矩陣加法
     *
     * @param a
     * @return
     */
    public Matrix plus(Matrix a) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        if (a.getMatrix() == null) {
            throw new Exception("參數矩陣為空");
        }
        if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) {
            throw new Exception("矩陣緯度不同,不可計算");
        }
        double[][] result = new double[matrixRowNums][matrixColNums];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[i][j] = matrix[i][j] + a.getMatrix()[i][j];
            }
        }
        return new Matrix(result);
    }

    /**
     * 矩陣減法
     *
     * @param a
     * @return
     */
    public Matrix subtract(Matrix a) throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        if (a.getMatrix() == null) {
            throw new Exception("參數矩陣為空");
        }
        if (matrixRowNums != a.getMatrixRowNums() && matrixColNums != a.getMatrixColNums()) {
            throw new Exception("矩陣緯度不同,不可計算");
        }
        double[][] result = new double[matrixRowNums][matrixColNums];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[i][j] = matrix[i][j] - a.getMatrix()[i][j];
            }
        }
        return new Matrix(result);
    }

    /**
     * 矩陣行求和
     *
     * @return
     */
    public Matrix sumRow() throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        double[][] result = new double[matrixRowNums][1];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[i][1] += matrix[i][j];
            }
        }
        return new Matrix(result);
    }

    /**
     * 矩陣列求和
     *
     * @return
     */
    public Matrix sumCol() throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        double[][] result = new double[1][matrixColNums];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[0][i] += matrix[i][j];
            }
        }
        return new Matrix(result);
    }

    /**
     * 矩陣所有元素求和
     *
     * @return
     */
    public double sumAll() throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        double result = 0;
        for (double[] doubles : matrix) {
            for (int j = 0; j < matrixColNums; j++) {
                result += doubles[j];
            }
        }
        return result;
    }

    /**
     * 矩陣所有元素求平方
     *
     * @return
     */
    public Matrix square() throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        double[][] result = new double[matrixRowNums][matrixColNums];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[i][j] = matrix[i][j] * matrix[i][j];
            }
        }
        return new Matrix(result);
    }

    /**
     * 矩陣轉置
     *
     * @return
     */
    public Matrix transpose() throws Exception {
        if (matrix == null) {
            throw new Exception("矩陣為空");
        }
        double[][] result = new double[matrixColNums][matrixRowNums];
        for (int i = 0; i < matrixRowNums; i++) {
            for (int j = 0; j < matrixColNums; j++) {
                result[j][i] = matrix[i][j];
            }
        }
        return new Matrix(result);
    }

    @Override
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        stringBuilder.append("\r\n");
        for (int i = 0; i < matrixRowNums; i++) {
            stringBuilder.append("# ");
            for (int j = 0; j < matrixColNums; j++) {
                stringBuilder.append(matrix[i][j]).append("\t ");
            }
            stringBuilder.append("#\r\n");
        }
        stringBuilder.append("\r\n");
        return stringBuilder.toString();
    }
}

Matrix代碼
           

ActivationFunction接口

public interface ActivationFunction {
    //計算值
    double computeValue(double val);
    //計算導數
    double computeDerivative(double val);
}

ActivationFunction代碼
           

Sigmoid

import java.io.Serializable;

public class Sigmoid implements ActivationFunction, Serializable {
    @Override
    public double computeValue(double val) {
        return 1 / (1 + Math.exp(-val));
    }

    @Override
    public double computeDerivative(double val) {
        return computeValue(val) * (1 - computeValue(val));
    }
}

Sigmoid代碼
           

BPParameter

包含了BP神經網絡訓練所需的參數

import java.io.Serializable;

public class BPParameter implements Serializable {

    //輸入層神經元個數
    private int inputLayerNeuronNum = 3;
    //隐含層神經元個數
    private int hiddenLayerNeuronNum = 3;
    //輸出層神經元個數
    private int outputLayerNeuronNum = 1;
    //歸一化區間
    private double normalizationMin = 0.2;
    private double normalizationMax = 0.8;
    //學習步長
    private double step = 0.05;
    //動量因子
    private double momentumFactor = 0.2;
    //激活函數
    private ActivationFunction activationFunction = new Sigmoid();
    //精度
    private double precision = 0.000001;
    //最大循環次數
    private int maxTimes = 1000000;

    public double getMomentumFactor() {
        return momentumFactor;
    }

    public void setMomentumFactor(double momentumFactor) {
        this.momentumFactor = momentumFactor;
    }

    public double getStep() {
        return step;
    }

    public void setStep(double step) {
        this.step = step;
    }

    public double getNormalizationMin() {
        return normalizationMin;
    }

    public void setNormalizationMin(double normalizationMin) {
        this.normalizationMin = normalizationMin;
    }

    public double getNormalizationMax() {
        return normalizationMax;
    }

    public void setNormalizationMax(double normalizationMax) {
        this.normalizationMax = normalizationMax;
    }

    public int getInputLayerNeuronNum() {
        return inputLayerNeuronNum;
    }

    public void setInputLayerNeuronNum(int inputLayerNeuronNum) {
        this.inputLayerNeuronNum = inputLayerNeuronNum;
    }

    public int getHiddenLayerNeuronNum() {
        return hiddenLayerNeuronNum;
    }

    public void setHiddenLayerNeuronNum(int hiddenLayerNeuronNum) {
        this.hiddenLayerNeuronNum = hiddenLayerNeuronNum;
    }

    public int getOutputLayerNeuronNum() {
        return outputLayerNeuronNum;
    }

    public void setOutputLayerNeuronNum(int outputLayerNeuronNum) {
        this.outputLayerNeuronNum = outputLayerNeuronNum;
    }

    public ActivationFunction getActivationFunction() {
        return activationFunction;
    }

    public void setActivationFunction(ActivationFunction activationFunction) {
        this.activationFunction = activationFunction;
    }

    public double getPrecision() {
        return precision;
    }

    public void setPrecision(double precision) {
        this.precision = precision;
    }

    public int getMaxTimes() {
        return maxTimes;
    }

    public void setMaxTimes(int maxTimes) {
        this.maxTimes = maxTimes;
    }
}

BPParameter代碼
           

BPModel

BP神經網絡模型,包括權值與門檻值及訓練參數等屬性

import java.io.Serializable;

public class BPModel implements Serializable {
    //BP神經網絡權值與門檻值
    private Matrix weightIJ;
    private Matrix b1;
    private Matrix weightJP;
    private Matrix b2;
    /*用于反歸一化*/
    private Matrix inputMax;
    private Matrix inputMin;
    private Matrix outputMax;
    private Matrix outputMin;
    /*BP神經網絡訓練參數*/
    private BPParameter bpParameter;
    /*BP神經網絡訓練情況*/
    private double error;
    private int times;

    public Matrix getWeightIJ() {
        return weightIJ;
    }

    public void setWeightIJ(Matrix weightIJ) {
        this.weightIJ = weightIJ;
    }

    public Matrix getB1() {
        return b1;
    }

    public void setB1(Matrix b1) {
        this.b1 = b1;
    }

    public Matrix getWeightJP() {
        return weightJP;
    }

    public void setWeightJP(Matrix weightJP) {
        this.weightJP = weightJP;
    }

    public Matrix getB2() {
        return b2;
    }

    public void setB2(Matrix b2) {
        this.b2 = b2;
    }

    public Matrix getInputMax() {
        return inputMax;
    }

    public void setInputMax(Matrix inputMax) {
        this.inputMax = inputMax;
    }

    public Matrix getInputMin() {
        return inputMin;
    }

    public void setInputMin(Matrix inputMin) {
        this.inputMin = inputMin;
    }

    public Matrix getOutputMax() {
        return outputMax;
    }

    public void setOutputMax(Matrix outputMax) {
        this.outputMax = outputMax;
    }

    public Matrix getOutputMin() {
        return outputMin;
    }

    public void setOutputMin(Matrix outputMin) {
        this.outputMin = outputMin;
    }

    public BPParameter getBpParameter() {
        return bpParameter;
    }

    public void setBpParameter(BPParameter bpParameter) {
        this.bpParameter = bpParameter;
    }

    public double getError() {
        return error;
    }

    public void setError(double error) {
        this.error = error;
    }

    public int getTimes() {
        return times;
    }

    public void setTimes(int times) {
        this.times = times;
    }
}

BPModel代碼
           

BPNeuralNetworkFactory

BP神經網絡工廠,包含了BP神經網絡訓練等功能

import java.io.*;
import java.util.*;

public class BPNeuralNetworkFactory {
    /**
     * 訓練BP神經網絡模型
     * @param bpParameter
     * @param inputAndOutput
     * @return
     */
    public BPModel trainBP(BPParameter bpParameter, Matrix inputAndOutput) throws Exception {
        //BP神經網絡的輸出
        BPModel result = new BPModel();
        result.setBpParameter(bpParameter);

        ActivationFunction activationFunction = bpParameter.getActivationFunction();
        int inputNum = bpParameter.getInputLayerNeuronNum();
        int hiddenNum = bpParameter.getHiddenLayerNeuronNum();
        int outputNum = bpParameter.getOutputLayerNeuronNum();
        double normalizationMin = bpParameter.getNormalizationMin();
        double normalizationMax = bpParameter.getNormalizationMax();
        double step = bpParameter.getStep();
        double momentumFactor = bpParameter.getMomentumFactor();
        double precision = bpParameter.getPrecision();
        int maxTimes = bpParameter.getMaxTimes();

        if(inputAndOutput.getMatrixColNums() != inputNum + outputNum){
            throw new Exception("神經元個數不符,請修改");
        }
        //初始化權值
        Matrix weightIJ = initWeight(inputNum, hiddenNum);
        Matrix weightJP = initWeight(hiddenNum, outputNum);

        //初始化門檻值
        Matrix b1 = initThreshold(hiddenNum);
        Matrix b2 = initThreshold(outputNum);

        //動量項
        Matrix deltaWeightIJ0 = new Matrix(inputNum, hiddenNum);
        Matrix deltaWeightJP0 = new Matrix(hiddenNum, outputNum);
        Matrix deltaB10 = new Matrix(1, hiddenNum);
        Matrix deltaB20 = new Matrix(1, outputNum);

        Matrix input = new Matrix(new double[inputAndOutput.getMatrixRowNums()][inputNum]);
        Matrix output = new Matrix(new double[inputAndOutput.getMatrixRowNums()][outputNum]);
        for (int i = 0; i < inputAndOutput.getMatrixRowNums(); i++) {
            for (int j = 0; j < inputNum; j++) {
                input.getMatrix()[i][j] = inputAndOutput.getValOfIdx(i,j);
            }
            for (int j = 0; j < inputAndOutput.getMatrixColNums() - inputNum; j++) {
                output.getMatrix()[i][j] = inputAndOutput.getValOfIdx(i,inputNum+j);
            }
        }

        //歸一化
        Map inputAfterNormalize = normalize(input, normalizationMin, normalizationMax);
        input = (Matrix) inputAfterNormalize.get("res");
        Matrix inputMax = (Matrix) inputAfterNormalize.get("max");
        Matrix inputMin = (Matrix) inputAfterNormalize.get("min");
        result.setInputMax(inputMax);
        result.setInputMin(inputMin);
        Map outputAfterNormalize = normalize(output, normalizationMin, normalizationMax);
        output = (Matrix) outputAfterNormalize.get("res");
        Matrix outputMax = (Matrix) outputAfterNormalize.get("max");
        Matrix outputMin = (Matrix) outputAfterNormalize.get("min");
        result.setOutputMax(outputMax);
        result.setOutputMin(outputMin);int times = 1;double E = 0;//誤差while (times < maxTimes) {/*-----------------正向傳播---------------------*///隐含層輸入
            Matrix jIn = input.multiple(weightIJ);double[][] b1CopyArr = new double[jIn.getMatrixRowNums()][b1.getMatrixRowNums()];//擴充門檻值for (int i = 0; i < jIn.getMatrixRowNums(); i++) {
                b1CopyArr[i] = b1.getMatrix()[0];
            }
            Matrix b1Copy = new Matrix(b1CopyArr);//加上門檻值
            jIn = jIn.plus(b1Copy);//隐含層輸出
            Matrix jOut = computeValue(jIn,activationFunction);//輸出層輸入
            Matrix pIn = jOut.multiple(weightJP);double[][] b2CopyArr = new double[pIn.getMatrixRowNums()][b2.getMatrixRowNums()];//擴充門檻值for (int i = 0; i < pIn.getMatrixRowNums(); i++) {
                b2CopyArr[i] = b2.getMatrix()[0];
            }
            Matrix b2Copy = new Matrix(b2CopyArr);//加上門檻值
            pIn = pIn.plus(b2Copy);//輸出層輸出
            Matrix pOut = computeValue(pIn,activationFunction);//計算誤差
            Matrix e = output.subtract(pOut);
            E = computeE(e);//誤差//判斷是否符合精度if (Math.abs(E) <= precision) {
                System.out.println("滿足精度");break;
            }/*-----------------反向傳播---------------------*///J與P之間權值修正量
            Matrix deltaWeightJP = e.multiple(step);
            deltaWeightJP = deltaWeightJP.pointMultiple(computeDerivative(pIn,activationFunction));
            deltaWeightJP = deltaWeightJP.transpose().multiple(jOut);
            deltaWeightJP = deltaWeightJP.transpose();//P層神經元門檻值修正量
            Matrix deltaThresholdP = e.multiple(step);
            deltaThresholdP = deltaThresholdP.transpose().multiple(computeDerivative(pIn, activationFunction));//I與J之間的權值修正量
            Matrix deltaO = e.pointMultiple(computeDerivative(pIn,activationFunction));
            Matrix tmp = weightJP.multiple(deltaO.transpose()).transpose();
            Matrix deltaWeightIJ = tmp.pointMultiple(computeDerivative(jIn, activationFunction));
            deltaWeightIJ = input.transpose().multiple(deltaWeightIJ);
            deltaWeightIJ = deltaWeightIJ.multiple(step);//J層神經元門檻值修正量
            Matrix deltaThresholdJ = tmp.transpose().multiple(computeDerivative(jIn, activationFunction));
            deltaThresholdJ = deltaThresholdJ.multiple(-step);if (times == 1) {//更新權值與門檻值
                weightIJ = weightIJ.plus(deltaWeightIJ);
                weightJP = weightJP.plus(deltaWeightJP);
                b1 = b1.plus(deltaThresholdJ);
                b2 = b2.plus(deltaThresholdP);
            }else{//加動量項
                weightIJ = weightIJ.plus(deltaWeightIJ).plus(deltaWeightIJ0.multiple(momentumFactor));
                weightJP = weightJP.plus(deltaWeightJP).plus(deltaWeightJP0.multiple(momentumFactor));
                b1 = b1.plus(deltaThresholdJ).plus(deltaB10.multiple(momentumFactor));
                b2 = b2.plus(deltaThresholdP).plus(deltaB20.multiple(momentumFactor));
            }
            deltaWeightIJ0 = deltaWeightIJ;
            deltaWeightJP0 = deltaWeightJP;
            deltaB10 = deltaThresholdJ;
            deltaB20 = deltaThresholdP;
            times++;
        }
        result.setWeightIJ(weightIJ);
        result.setWeightJP(weightJP);
        result.setB1(b1);
        result.setB2(b2);
        result.setError(E);
        result.setTimes(times);
        System.out.println("循環次數:" + times + ",誤差:" + E);return result;
    }/**
     * 計算BP神經網絡的值
     * @param bpModel
     * @param input
     * @return
     */public Matrix computeBP(BPModel bpModel,Matrix input) throws Exception {if (input.getMatrixColNums() != bpModel.getBpParameter().getInputLayerNeuronNum()) {throw new Exception("輸入矩陣緯度有誤");
        }
        ActivationFunction activationFunction = bpModel.getBpParameter().getActivationFunction();
        Matrix weightIJ = bpModel.getWeightIJ();
        Matrix weightJP = bpModel.getWeightJP();
        Matrix b1 = bpModel.getB1();
        Matrix b2 = bpModel.getB2();double[][] normalizedInput = new double[input.getMatrixRowNums()][input.getMatrixColNums()];for (int i = 0; i < input.getMatrixRowNums(); i++) {for (int j = 0; j < input.getMatrixColNums(); j++) {
                normalizedInput[i][j] = bpModel.getBpParameter().getNormalizationMin()
                        + (input.getValOfIdx(i,j) - bpModel.getInputMin().getValOfIdx(0,j))
                        / (bpModel.getInputMax().getValOfIdx(0,j) - bpModel.getInputMin().getValOfIdx(0,j))
                        * (bpModel.getBpParameter().getNormalizationMax() - bpModel.getBpParameter().getNormalizationMin());
            }
        }
        Matrix normalizedInputMatrix = new Matrix(normalizedInput);
        Matrix jIn = normalizedInputMatrix.multiple(weightIJ);double[][] b1CopyArr = new double[jIn.getMatrixRowNums()][b1.getMatrixRowNums()];//擴充門檻值for (int i = 0; i < jIn.getMatrixRowNums(); i++) {
            b1CopyArr[i] = b1.getMatrix()[0];
        }
        Matrix b1Copy = new Matrix(b1CopyArr);//加上門檻值
        jIn = jIn.plus(b1Copy);//隐含層輸出
        Matrix jOut = computeValue(jIn,activationFunction);//輸出層輸入
        Matrix pIn = jOut.multiple(weightJP);double[][] b2CopyArr = new double[pIn.getMatrixRowNums()][b2.getMatrixRowNums()];//擴充門檻值for (int i = 0; i < pIn.getMatrixRowNums(); i++) {
            b2CopyArr[i] = b2.getMatrix()[0];
        }
        Matrix b2Copy = new Matrix(b2CopyArr);//加上門檻值
        pIn = pIn.plus(b2Copy);//輸出層輸出
        Matrix pOut = computeValue(pIn,activationFunction);//反歸一化
        Matrix result = inverseNormalize(pOut, bpModel.getBpParameter().getNormalizationMax(), bpModel.getBpParameter().getNormalizationMin(), bpModel.getOutputMax(), bpModel.getOutputMin());return result;
    }//初始化權值private Matrix initWeight(int x,int y){
        Random random=new Random();double[][] weight = new double[x][y];for (int i = 0; i < x; i++) {for (int j = 0; j < y; j++) {
                weight[i][j] = 2*random.nextDouble()-1;
            }
        }return new Matrix(weight);
    }//初始化門檻值private Matrix initThreshold(int x){
        Random random = new Random();double[][] result = new double[1][x];for (int i = 0; i < x; i++) {
            result[0][i] = 2*random.nextDouble()-1;
        }return new Matrix(result);
    }/**
     * 計算激活函數的值
     * @param a
     * @return
     */private Matrix computeValue(Matrix a, ActivationFunction activationFunction) throws Exception {if (a.getMatrix() == null) {throw new Exception("參數值為空");
        }double[][] result = new double[a.getMatrixRowNums()][a.getMatrixColNums()];for (int i = 0; i < a.getMatrixRowNums(); i++) {for (int j = 0; j < a.getMatrixColNums(); j++) {
                result[i][j] = activationFunction.computeValue(a.getValOfIdx(i,j));
            }
        }return new Matrix(result);
    }/**
     * 激活函數導數的值
     * @param a
     * @return
     */private Matrix computeDerivative(Matrix a , ActivationFunction activationFunction) throws Exception {if (a.getMatrix() == null) {throw new Exception("參數值為空");
        }double[][] result = new double[a.getMatrixRowNums()][a.getMatrixColNums()];for (int i = 0; i < a.getMatrixRowNums(); i++) {for (int j = 0; j < a.getMatrixColNums(); j++) {
                result[i][j] = activationFunction.computeDerivative(a.getValOfIdx(i,j));
            }
        }return new Matrix(result);
    }/**
     * 資料歸一化
     * @param a 要歸一化的資料
     * @param normalizationMin 要歸一化的區間下限
     * @param normalizationMax 要歸一化的區間上限
     * @return
     */private Mapnormalize(Matrix a, double normalizationMin, double normalizationMax) throws Exception {
        HashMap result = new HashMap<>();double[][] maxArr = new double[1][a.getMatrixColNums()];double[][] minArr = new double[1][a.getMatrixColNums()];double[][] res = new double[a.getMatrixRowNums()][a.getMatrixColNums()];for (int i = 0; i < a.getMatrixColNums(); i++) {
            List tmp = new ArrayList();for (int j = 0; j < a.getMatrixRowNums(); j++) {
                tmp.add(a.getValOfIdx(j,i));
            }double max = (double) Collections.max(tmp);double min = (double) Collections.min(tmp);//資料歸一化(注:若max與min均為0則不需要歸一化)if (max != 0 || min != 0) {for (int j = 0; j < a.getMatrixRowNums(); j++) {
                    res[j][i] = normalizationMin + (a.getValOfIdx(j,i) - min) / (max - min) * (normalizationMax - normalizationMin);
                }
            }
            maxArr[0][i] = max;
            minArr[0][i] = min;
        }
        result.put("max", new Matrix(maxArr));
        result.put("min", new Matrix(minArr));
        result.put("res", new Matrix(res));return result;
    }/**
     * 反歸一化
     * @param a 要反歸一化的資料
     * @param normalizationMin 要反歸一化的區間下限
     * @param normalizationMax 要反歸一化的區間上限
     * @param dataMax 資料最大值
     * @param dataMin 資料最小值
     * @return
     */private Matrix inverseNormalize(Matrix a, double normalizationMax, double normalizationMin , Matrix dataMax,Matrix dataMin) throws Exception {double[][] res = new double[a.getMatrixRowNums()][a.getMatrixColNums()];for (int i = 0; i < a.getMatrixColNums(); i++) {//資料反歸一化if (dataMin.getValOfIdx(0,i) != 0 || dataMax.getValOfIdx(0,i) != 0) {for (int j = 0; j < a.getMatrixRowNums(); j++) {
                    res[j][i] = dataMin.getValOfIdx(0,i) + (dataMax.getValOfIdx(0,i) - dataMin.getValOfIdx(0,i)) * (a.getValOfIdx(j,i) - normalizationMin) / (normalizationMax - normalizationMin);
                }
            }
        }return new Matrix(res);
    }/**
     * 計算誤差
     * @param e
     * @return
     */private double computeE(Matrix e) throws Exception {
        e = e.square();return 0.5*e.sumAll();
    }/**
     * 将BP模型序列化到本地
     * @param bpModel
     * @throws IOException
     */public void serialize(BPModel bpModel,String path) throws IOException {
        File file = new File(path);
        System.out.println(file.getAbsolutePath());
        ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(file));
        out.writeObject(bpModel);
        out.close();
    }/**
     * 将BP模型反序列化
     * @return
     * @throws IOException
     * @throws ClassNotFoundException
     */public BPModel deSerialization(String path) throws IOException, ClassNotFoundException {
        File file = new File(path);
        ObjectInputStream oin = new ObjectInputStream(new FileInputStream(file));
        BPModel bpModel = (BPModel) oin.readObject(); // 強制轉換到BPModel類型
        oin.close();return bpModel;
    }
}
BPNeuralNetworkFactory代碼
           

使用方式

思路就是建立BPNeuralNetworkFactory對象,并傳入BPParameter對象,調用BPNeuralNetworkFactory的trainBP(BPParameter bpParameter, Matrix inputAndOutput)方法,傳回一個BPModel對象,可以使用BPNeuralNetworkFactory的序列化方法,将其序列化到本地,或者将其放到緩存中,使用時直接從本地反序列化擷取到BPModel對象,調用BPNeuralNetworkFactory的computeBP(BPModel bpModel,Matrix input)方法,即可擷取計算值。

使用詳情請看:https://github.com/ineedahouse/top-algorithm-set-doc/blob/master/doc/bpnn/BPNeuralNetwork.md

源碼github位址

https://github.com/ineedahouse/top-algorithm-set

對您有幫助的話,請點個Star~謝謝

參考:基于BP神經網絡的無限制優化方法研究及應用[D]. 趙逸翔.東北農業大學 2019

bp神經網絡_JAVA實作BP神經網絡算法
bp神經網絡_JAVA實作BP神經網絡算法
  • 新款SpringBoot線上教育平台開源了

  • 50份優秀Java求職者履歷

  • SpringCloud前後端分離實戰項目視訊教程分享

  • 2020年全網最全BAT筆試面試題打包分享

感謝點贊支援下哈 

bp神經網絡_JAVA實作BP神經網絡算法

繼續閱讀