天天看點

第五章 決策樹

基本梳理:

第五章 決策樹
  • 決策樹模型與學習
    • 決策樹是通過一系列規則對資料進行分類的過程
    • 優點
      • 推理過程容易了解
      • 依賴于屬性變量
      • 忽略沒有貢獻的屬性變量
    • 核心是歸納算法
    • 決策樹相關的重要算法
      • CLS
      • ID3
      • C4.5
      • CART
  • 特征選擇
    • 決策樹的CLS算法
    • 資訊增益
        • 消息量大小的度量
        • I ( a i ) = p ( a i ) log ⁡ 2 1 p ( a i ) I \left( a _ { i } \right) = p \left( a _ { i } \right) \log _ { 2 } \frac { 1 } { p \left( a _ { i } \right) } I(ai​)=p(ai​)log2​p(ai​)1​
        • 熵越大,随機變量的不确定性越大
      • 條件熵
        • H ( Y ∣ X ) = ∑ i = 1 n p i H ( Y ∣ X = x i ) H ( Y | X ) = \sum _ { i = 1 } ^ { n } p _ { i } H ( Y | X = x _ { i } ) H(Y∣X)=∑i=1n​pi​H(Y∣X=xi​)
      • 消息增益
        • g ( D , A ) = H ( D ) − H ( D ∣ A ) g ( D , A ) = H ( D ) - H ( D | A ) g(D,A)=H(D)−H(D∣A)
        • 得知特征X的消息而使的類Y的消息的不确定性減少的程度
      • 算法
        • 輸入:訓練資料集D和特征A
        • 輸出:特征A對訓練資料集D的資訊增益g(D,A)
        • 計算資料集D的經驗熵H(D)
          • H ( D ) = - \sum _ { k = 1 } ^ { K } \frac { \left| C _ { k } \right| } { D | } \log _ { 2 } \frac { \left| C _ { k } \right| } { | D | }
        • 計算特征A對資料集D的經驗條件熵H(D|A)
          • H ( D ∣ A ) = ∑ i = 1 n ∣ D i ∣ ∣ D ∣ H ( D i ) = − ∑ i = 1 n ∣ D i ∣ D ∣ ∑ k = 1 K ∣ D i k ∣ ∣ D i ∣ log ⁡ 2 ∣ D i k ∣ ∣ D i ∣ H ( D | A ) = \sum _ { i = 1 } ^ { n } \frac { \left| D _ { i } \right| } { | D | } H \left( D _ { i } \right) = - \sum _ { i = 1 } ^ { n } \frac { \left| D _ { i } \right| } { D | } \sum _ { k = 1 } ^ { K } \frac { \left| D _ { i k } \right| } { \left| D _ { i } \right| } \log _ { 2 } \frac { \left| D _ { i k } \right| } { \left| D _ { i } \right| } H(D∣A)=∑i=1n​∣D∣∣Di​∣​H(Di​)=−∑i=1n​D∣∣Di​∣​∑k=1K​∣Di​∣∣Dik​∣​log2​∣Di​∣∣Dik​∣​
        • 計算資訊增益
          • g ( D , A ) = H ( D ) − H ( D ∣ A ) g ( D , A ) = H ( D ) - H ( D | A ) g(D,A)=H(D)−H(D∣A)
  • 決策樹的生成
  • 決策樹的剪枝
  • CART算法
    • 分類樹(目标變量是類别的)
    • 回歸樹(目标變量是連續的)

代碼小練習:

  • ID3(基于資訊增益)
  • C4.5(基于資訊增益比)
  • CART(gini指數)

entropy: H ( x ) = − ∑ i = 1 n p i log ⁡ p i H(x) = -\sum_{i=1}^{n}p_i\log{p_i} H(x)=−∑i=1n​pi​logpi​

conditional entropy: H ( X ∣ Y ) = ∑ P ( X ∣ Y ) log ⁡ P ( X ∣ Y ) H(X|Y)=\sum{P(X|Y)}\log{P(X|Y)} H(X∣Y)=∑P(X∣Y)logP(X∣Y)

information gain : g ( D , A ) = H ( D ) − H ( D ∣ A ) g(D, A)=H(D)-H(D|A) g(D,A)=H(D)−H(D∣A)

information gain ratio: g R ( D , A ) = g ( D , A ) H ( A ) g_R(D, A) = \frac{g(D,A)}{H(A)} gR​(D,A)=H(A)g(D,A)​

gini index: G i n i ( D ) = ∑ k = 1 K p k log ⁡ p k = 1 − ∑ k = 1 K p k 2 Gini(D)=\sum_{k=1}^{K}p_k\log{p_k}=1-\sum_{k=1}^{K}p_k^2 Gini(D)=∑k=1K​pk​logpk​=1−∑k=1K​pk2​

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math
from math import log

import pprint
           

1. 建立資料

# 書上題目5.1
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年齡', u'有工作', u'有自己的房子', u'信貸情況', u'類别']
    # 傳回資料集和每個次元的名稱
    return datasets, labels
           
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data
           
年齡 有工作 有自己的房子 信貸情況 類别
青年 一般
1 青年
2 青年
3 青年 一般
4 青年 一般
5 中年 一般
6 中年
7 中年
8 中年 非常好
9 中年 非常好
10 老年 非常好
11 老年
12 老年
13 老年 非常好
14 老年 一般

def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([ (p/data_length)*log(p/data_length,2) for p in label_count.values()])
    return ent
           

條件熵

def cond_ent(datasets,axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p)/data_length)*calc_ent(p) for p in feature_sets.values()])
    return cond_ent
           

資訊增益

def info_gain(ent,cond_ent):
    return ent - cond_ent
           

訓練

def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent,cond_ent(datasets,axis=c))
        best_feature.append((c,c_info_gain))
        print('特征({}) 的 info_gain : {:.5f}'.format(labels[c], c_info_gain))
    best_ = max(best_feature,key = lambda x: x[-1])
    return '特征({})的資訊增益最大,選擇為根節點特征'.format(labels[best_[0]])
           
info_gain_train(np.array(datasets))
           
特征(年齡) 的 info_gain : 0.08301
特征(有工作) 的 info_gain : 0.32365
特征(有自己的房子) 的 info_gain : 0.41997
特征(信貸情況) 的 info_gain : 0.36299





'特征(有自己的房子)的資訊增益最大,選擇為根節點特征'
           

利用ID3算法生成決策樹

class Node:
    def __init__(self,root=True,label=None,feature_name=None,feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.tree}
        #elf.result = {"label:"self.label,"feature:"self.feature,"tree":self.tree}
        
    def __repr__(self):
        return "{}".format(self.result)
    
    def add_node(self,val,node):
        self.tree[val] = node
        
    def predict(self,features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)

class DTree:
    def __init__(self,epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}
        
    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
        return ent

    # 經驗條件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 資訊增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比較大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_
    
    def train(self,train_data):
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]
        # 1,若D中執行個體屬于同一類Ck,則T為單節點樹,并将類Ck作為結點的類标記,傳回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True,
                        label=y_train.iloc[0])

        # 2, 若A為空,則T為單節點樹,将D中執行個體樹最大的類Ck作為該節點的類标記,傳回T
        if len(features) == 0:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 3,計算最大資訊增益 同5.1,Ag為資訊增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的資訊增益小于門檻值eta,則置T為單節點樹,并将D中是執行個體數最大的類Ck作為該節點的類标記,傳回T
        if max_info_gain < self.epsilon:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 5,建構Ag子集
        node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)

        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)

            # 6, 遞歸生成樹
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        # pprint.pprint(node_tree.tree)
        return node_tree
    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)
           
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
           
tree
           
{'label:': None, 'feature': 2, 'tree': {'是': {'label:': '是', 'feature': None, 'tree': {}}, '否': {'label:': None, 'feature': 1, 'tree': {'是': {'label:': '是', 'feature': None, 'tree': {}}, '否': {'label:': '否', 'feature': None, 'tree': {}}}}}}
           
dt.predict(['老年', '否', '否', '一般'])
           
'否'
           

sklearn.tree.DecisionTreeClassifier

criterion : string, optional (default=”gini”)

The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.

# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:,:2], data[:,-1]

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
           
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.tree import export_graphviz
import graphviz
           
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)
           
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
           
tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)
           
第五章 決策樹
clf.score(X_test, y_test)
           
0.90000000000000002
           

繼續閱讀