天天看點

不同方法推導Gamma分布可加性産生的沖突

不同方法推導Gamma分布可加性産生的沖突

Gamma分布的機率密度函數表示如下:

\[X \backsim G(\alpha,\beta): f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}

\]

其對應的矩母函數為

\[{\rm M}_x(t)=(1-\beta t)^{-\alpha}

顯然,若\(X_1 \backsim G(\alpha_1,\beta),X_2 \backsim G(\alpha_2,\beta)\),則\({\rm M}_{x_1}(t)=(1-\beta t)^{-\alpha_1},{\rm M}_{x_2}(t)=(1-\beta t)^{-\alpha_2}\),是以\({\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1-\beta t)^{-(\alpha_1+\alpha_2)}\),是以\(X_1+X_2 \backsim G(\alpha_1+\alpha_2,\beta)\),這即為Gamma分布的可加性原則。

從矩母函數的角度出發,Gamma分布可加性原則是顯而易見的。然而,本人在利用其它方法推導這一性質時,卻出現了沖突,一時難以發現端倪。現将推導過程展示如下(針對\(\alpha_1,\alpha_2\)為大于等于1的整數的情況):

由機率論的知識我們知道,兩個随機變量的和的機率密度函數是各自機率密度函數的卷積,是以若\(X=X_1+X_2\),則

\[\begin{equation}

\begin{aligned}

f_x(x)&=f_{x_1}(x)*f_{x_2}(x)=\int_0^x f_{x_1}(y)f_{x_2}(x-y)dy\\

&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\int_0^x y^{\alpha_1-1}e^{-\beta y} (x-y)^{\alpha_2-1}e^{-\beta(x-y)}dy\\

&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}e^{-\beta x}\int_0^x y^{\alpha_1-1} (x-y)^{\alpha_2-1}dy

\end{aligned}

\end{equation}\tag{1}

針對(1)中最後一個等式的計算,采用不同方法出現了不同的結果:

方法1:用二項展開可以得到\((x-y)^{\alpha_2-1}=\sum_{i=0}^{\alpha_2-1} (-1)^{\alpha_2-1-i}\begin{pmatrix}\alpha_2-1\\i\end{pmatrix}x^i y^{\alpha_2-1-i}\),将其代入(1)中可以得到

f_x(x)&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}e^{-\beta x}\sum_{i=0}^{\alpha_2-1}(-1)^{\alpha_2-1-i}\begin{pmatrix}\alpha_2-1\\i \end{pmatrix}x^i \int_0^x y^{\alpha_1+\alpha_2-i-2}dy\\

&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}[\sum_{i=0}^{\alpha_2-1}(-1)^{\alpha_2-1-i}\begin{pmatrix}\alpha_2-1\\i \end{pmatrix}/(\alpha_1+\alpha_2-i-1)]x^{\alpha_1+\alpha_2-1}e^{-\beta x}

\end{equation}\tag{2}

顯然,要想使命題得證,需要有\([\sum_{i=0}^{\alpha_2-1}(-1)^{\alpha_2-1-i}\begin{pmatrix}\alpha_2-1\\i \end{pmatrix}/(\alpha_1+\alpha_2-i-1)]=\frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(\alpha_1+\alpha_2)}=\Beta(\alpha_1,\alpha_2)\),(其中\(B(\alpha_1,\alpha_2)\)表示beta函數)但是這個等式似乎并不成立(可以簡單地用數值驗證)。是以利用上述方法無法使命題得證。

方法2:令\(y=tx\),将(1)轉化為對\(t\)的積分,可以得到

f_x(x)&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}[\int_0^1 t^{\alpha_1-1}(1-t)^{\alpha_2-1}dt]x^{\alpha_1+\alpha_2-1}e^{-\beta x}\\

&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\Beta(\alpha_1,\alpha_2)x^{\alpha_1+\alpha_2-1}e^{-\beta x}\\

&=\frac{\beta^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1+\alpha_2)}x^{\alpha_1+\alpha_2-1}e^{-\beta x}

\end{equation}\tag{3}

繼續閱讀