作業要求來自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/3002
0.從新聞url擷取點選次數,并整理成函數
- newsUrl
- newsId(re.search())
- clickUrl(str.format())
- requests.get(clickUrl)
- re.search()/.split()
- str.lstrip(),str.rstrip()
- int
- 整理成函數
- 擷取新聞釋出時間及類型轉換也整理成函數
1.從新聞url擷取新聞詳情: 字典,anews
import pandas
import requests
from bs4 import BeautifulSoup
from datetime import datetime
import re
def click(url):
id = re.findall('(\d{1,5})',url)[-1]#傳回所有比對的字元串的字元串清單的最後一個
clickUrl = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(id)
resClick = requests.get(clickUrl)
newsClick = int(resClick.text.split('.html')[-1].lstrip("('").rstrip("');"))
return newsClick
#時間
def newsdt(showinfo):
newsDate = showinfo.split()[0].split(':')[1]
newsTime = showinfo.split()[1]
newsDT = newsDate+' '+newsTime
dt = datetime.strptime(newsDT,'%Y-%m-%d %H:%M:%S')#轉換成datetime類型
return dt
#内容
def anews(url):
newsDetail = {}
res = requests.get(url)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text,'html.parser')
newsDetail['newsTitle'] = soup.select('.show-title')[0].text#題目
showinfo = soup.select('.show-info')[0].text
newsDetail['newsDT'] = newsdt(showinfo)#時間
newsDetail['newsClick'] = click(newsUrl)#點選次數
return newsDetail
newsUrl = 'http://news.gzcc.cn/html/2019/xiaoyuanxinwen_0404/11155.html'
print(anews(newsUrl))
anews

2.從清單頁的url擷取新聞url:清單append(字典) alist
import pandas
import requests
from bs4 import BeautifulSoup
from datetime import datetime
import re
def click(url):
id = re.findall('(\d{1,5})',url)[-1]#傳回所有比對的字元串的字元串清單的最後一個
clickUrl = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(id)
resClick = requests.get(clickUrl)
newsClick = int(resClick.text.split('.html')[-1].lstrip("('").rstrip("');"))
return newsClick
def newsdt(showinfo):
newsDate = showinfo.split()[0].split(':')[1]
newsTime = showinfo.split()[1]
newsDT = newsDate+' '+newsTime
dt = datetime.strptime(newsDT,'%Y-%m-%d %H:%M:%S')#轉換成datetime類型
return dt
def anews(url):
newsDetail = {}
res = requests.get(url)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text,'html.parser')
newsDetail['newsTitle'] = soup.select('.show-title')[0].text#題目
showinfo = soup.select('.show-info')[0].text
newsDetail['newsDT'] = newsdt(showinfo)#時間
newsDetail['newsClick'] = click(newsUrl)#點選次數
return newsDetail
def alist(url):
res = requests.get(listUrl)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
newsList = []
for news in soup.select('li'):#擷取li元素
if len(news.select('.news-list-title'))>0:#如果存在新聞題目
newsUrl = news.select('a')[0]['href']#擷取新聞的連結
newsDesc = news.select('.news-list-description')[0].text#擷取摘要文本
newsDict = anews(newsUrl)#通過連結擷取題目時間點選數
newsDict['description'] = newsDesc
newsList.append(newsDict)#把每個新聞的資訊放進字典擴充到清單裡
return newsList
listUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/'
print(alist(listUrl))
alist
3.生成所頁清單頁的url并擷取全部新聞 :清單extend(清單) allnews
*每個同學爬學号尾數開始的10個清單頁
def alist(url):
res=requests.get(listUrl)
res.encoding='utf-8'
soup = BeautifulSoup(res.text,'html.parser')
newsList=[]
for news in soup.select('li'):
if len(news.select('.news-list-title'))>0:
newsUrl=news.select('a')[0]['href']
newsDesc=news.select('.news-list-description')[0].text
newsDict=anews(newsUrl)
newsDict['description']=newsDesc
newsList.append(newsDict)
return newsList
listUrl='http://news.gzcc.cn/html/xiaoyuanxinwen/'
alist(listUrl)
allnews=[]
for i in range(40,50):
listUrl='http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'.format(i)
allnews.extend(alist(listUrl))
len(allnews)
4.設定合理的爬取間隔
import time
import random
time.sleep(random.random()*3)
import time
import random
for i in range(5):
print(i)
time.sleep(random.random()*3)#沉睡随機數的3倍秒數
print(allnews)
5.用pandas做簡單的資料處理并儲存
儲存到csv或excel檔案
newsdf.to_csv(r'F:\duym\爬蟲\gzccnews.csv')
import pandas as pd
s2 = pd.Series(anews(newsUrl))#一維數組對象
print(s2)
newsdf = pd.DataFrame(allnews)#表格型的資料結構
print(newsdf)
print(newsdf.sort_values(by=['newsDT'],ascending=False))#按更新時間降序排列
print(newsdf.sort_index(by=['newsClick'],ascending=False))#按點選量降序排列
newsdf.to_csv(r'gzccnews.csv')
import sqlite3
with sqlite3.connect('gzccnewsdb.sqlite') as db:
newsdf.to_sql('gzccnewsdb',db)
with sqlite3.connect('gzccnewsdb.sqlite') as db:
df2 = pandas.read_sql_query('SELECT * FROM gzccnewsdb',con=db)
print(df2[df2['newsClick']>385])
newsdf.to_csv(r'F:\gzccnews.csv')