
scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None)
from scipy import optimize as op
import numpy as np
c=np.array([2,3,-5])
A_ub=np.array([[-2,5,-1],[1,3,1]])
B_ub=np.array([-10,12])
A_eq=np.array([[1,1,1]])
B_eq=np.array([7])
x1=(0,7)
x2=(0,7)
x3=(0,7)
res=op.linprog(-c,A_ub,B_ub,A_eq,B_eq,bounds=(x1,x2,x3))
print(res)
con: array([0.])
fun: -14.571428571428571
message: 'Optimization terminated successfully.'
nit: 8
slack: array([0. , 3.85714286])
status: 0
success: True
x: array([6.42857143, 0.57142857, 0. ])