題意
将N種食品分給m個參賽選手,一個機關的某食品給某個選手一定滿足度,每個選手有一個最大滿足度。為了避免浪費,分給每一個選手的食品都不超越選手的滿足度。已知的各種食品的單價,求最多可以花的錢。
思路
标準的線性規劃---直接求即可……目前隻會用用模闆,還沒搞清楚單純性算法……
代碼
[cpp]
/**
Simplex C(n+m)(n)
maximize:
c[1]*x[1]+c[2]*x[2]+...+c[n]*x[n]+ans
subject to
a[1,1]*x[1]+a[1,2]*x[2]+...a[1,n]*x[n] <= rhs[1]
a[2,1]*x[1]+a[2,2]*x[2]+...a[2,n]*x[n] <= rhs[2]
......
a[m,1]*x[1]+a[m,2]*x[2]+...a[m,n]*x[n] <= rhs[m]
限制:
傳入的矩陣必須是标準形式的, 即目标函數要最大化;限制不等式均為<= ;xi為非負數(>=0).
simplex傳回參數:
OPTIMAL 有唯一最優解
UNBOUNDED 最優值無邊界
FEASIBLE 有可行解
INFEASIBLE 無解
n為元素個數,m為限制個數
線性規劃:
max c[]*x;
a[][]<=rhs[];
ans即為結果,x[]為一組解(最優解or可行解)
**/
const double eps = 1e-8;
const double inf = 1e15;
#define OPTIMAL -1 //表示有唯一的最優基本可行解
#define UNBOUNDED -2 //表示目标函數的最大值無邊界
#define FEASIBLE -3 //表示有可行解
#define INFEASIBLE -4 //表示無解
#define PIVOT_OK 1 //還可以松弛
#define maxn 1000
struct LinearProgramming{
int basic[maxn], row[maxn], col[maxn];
double c0[maxn];
double dcmp(double x){
if (x > eps) return 1;
else if (x < -eps) return -1;
return 0;
}
void init(int n, int m, double c[], double a[maxn][maxn], double rhs[], double &ans) { //初始化
for(int i = 0; i <= n+m; i++) {
for(int j = 0; j <= n+m; j++) a[i][j]=0;
basic[i]=0; row[i]=0; col[i]=0;
c[i]=0; rhs[i]=0;
}
ans=0;
//轉軸操作
int Pivot(int n, int m, double c[], double a[maxn][maxn], double rhs[], int &i, int &j){
double min = inf;
int k = -1;
for (j = 0; j <= n; j ++)
if (!basic[j] && dcmp(c[j]) > 0)
if (k < 0 || dcmp(c[j] - c[k]) > 0) k = j;
j = k;
if (k < 0) return OPTIMAL;
for (k = -1, i = 1; i <= m; i ++) if (dcmp(a[i][j]) > 0)
if (dcmp(rhs[i] / a[i][j] - min) < 0){ min = rhs[i]/a[i][j]; k = i; }
i = k;
if (k < 0) return UNBOUNDED;
else return PIVOT_OK;
int PhaseII(int n, int m, double c[], double a[maxn][maxn], double rhs[], double &ans, int PivotIndex){
int i, j, k, l; double tmp;
while(k = Pivot(n, m, c, a, rhs, i, j), k == PIVOT_OK || PivotIndex){
if (PivotIndex){ i = PivotIndex; j = PivotIndex = 0; }
basic[row[i]] = 0; col[row[i]] = 0; basic[j] = 1; col[j] = i; row[i] = j;
tmp = a[i][j];
for (k = 0; k <= n; k ++) a[i][k] /= tmp;
rhs[i] /= tmp;
for (k = 1; k <= m; k ++)
if (k != i && dcmp(a[k][j])){
tmp = -a[k][j];
for (l = 0; l <= n; l ++) a[k][l] += tmp*a[i][l];
rhs[k] += tmp*rhs[i];
}
tmp = -c[j];
for (l = 0; l <= n; l ++) c[l] += a[i][l]*tmp;
ans -= tmp * rhs[i];
return k;
int PhaseI(int n, int m, double c[], double a[maxn][maxn], double rhs[], double &ans){
int i, j, k = -1;
double tmp, min = 0, ans0 = 0;
for (i = 1; i <= m; i ++)
if (dcmp(rhs[i]-min) < 0){min = rhs[i]; k = i;}
if (k < 0) return FEASIBLE;
for (i = 1; i <= m; i ++) a[i][0] = -1;
for (j = 1; j <= n; j ++) c0[j] = 0;
c0[0] = -1;
PhaseII(n, m, c0, a, rhs, ans0, k);
if (dcmp(ans0) < 0) return INFEASIBLE;
for (i = 1; i <= m; i ++) a[i][0] = 0;
for (j = 1; j <= n; j ++)
if (dcmp(c[j]) && basic[j]){
tmp = c[j];
ans += rhs[col[j]] * tmp;
for (i = 0; i <= n; i ++) c[i] -= tmp*a[col[j]][i];
}
return FEASIBLE;
//standard form
//n:原變量個數 m:原限制條件個數
//c:目标函數系數向量-[1~n],c[0] = 0;
//a:限制條件系數矩陣-[1~m][1~n] rhs:限制條件不等式右邊常數列向量-[1~m]
//ans:最優值 x:最優解||可行解向量-[1~n]
int simplex(int n, int m, double c[], double a[maxn][maxn], double rhs[], double &ans, double x[]){
int i, j, k;
//标準形式變松弛形式
for (i = 1; i <= m; i ++){
for (j = n+1; j <= n+m; j ++) a[i][j] = 0;
a[i][n+i] = 1; a[i][0] = 0;
row[i] = n+i; col[n+i] = i;
k = PhaseI(n+m, m, c, a, rhs, ans);
if (k == INFEASIBLE) return k;
k = PhaseII(n+m, m, c, a, rhs, ans, 0);
for (j = 0; j <= n+m; j ++) x[j] = 0;
for (i = 1; i <= m; i ++) x[row[i]] = rhs[i];
}ps; //Primal Simplex
int n,m;
double c[maxn], ans, a[maxn][maxn], b[maxn], x[maxn];
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
while(scanf("%d %d", &n, &m) != EOF){
double ans;
ps.init(n, m, c, a, b, ans);
for (int i = 1; i <= n; i ++)
scanf("%lf", &c[i]);
for (int i = 1; i <= m; i ++){
for (int j = 1; j <= n; j ++){
scanf("%lf", &a[i][j]);
scanf("%lf", &b[i]);
ps.simplex(n,m,c,a,b,ans,x);
printf("Nasa can spend %.0f taka.\n", ceil(m*ans));
}
return 0;
}
[/cpp]
舉杯獨醉,飲罷飛雪,茫然又一年歲。 ------AbandonZHANG