天天看點

Elasticsearch 入門教程

Elasticsearch 入門教程

本文根據 指南,基于​

​docker​

​ 容器快速搭建 ​

​Elasticsearch​

​ 環境,并結   ​

​Elasticsearch​

​ 快速入門進行總結。 

安裝

官網安裝教程位址:

​https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html​

基本概念

1. Node 與 Cluster

​Elastic​

​ 本質上是一個分布式資料庫,允許多台伺服器協同工作,每台伺服器可以運作多個 ​

​Elastic​

​ 執行個體,單個 ​

​Elastic​

​ 執行個體稱為一個節點(​

​node​

​),一組節點構成一個叢集(​

​cluster​

​)。

2. Index

​Elastic​

​ 會索引所有字段,經過處理後寫入一個反向索引(​

​Inverted Index​

​)。查找資料的時候,直接查找該索引。

是以,​

​Elastic​

​ 資料管理的頂層機關就叫做 ​

​Index​

​(索引)。它是單個資料庫的同義詞。每個 ​

​Index​

​ (即資料庫)的名字必須是小寫。

下面的指令可以檢視目前節點的所有 ​

​Index​

​。

$ curl -X GET 'http://localhost:9200/_cat/indices?v'
      

3. 添加單個資料

POST logs-my_app-default/_doc
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"event": {
"original": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
  }
}
      

結果:

{
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
"_type": "_doc",
"_id": "gl5MJXMBMk1dGnErnBW8",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
  },
"_seq_no": 0,
"_primary_term": 1
}
      

4. 添加多個資料

PUT logs-my_app-default/_bulk
{ "create": { } }
{ "@timestamp": "2099-05-07T16:24:32.000Z", "event": { "original": "192.0.2.242 - - [07/May/2020:16:24:32 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0" } }
{ "create": { } }
{ "@timestamp": "2099-05-08T16:25:42.000Z", "event": { "original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638" } }
      

5. 搜尋資料

查詢所有比對資料:​

​logs-my_app-default​

​,并以​

​@timestamp​

​ 降序顯示

GET logs-my_app-default/_search
{
"query": {
"match_all": { }
  },
"sort": [
    {
"@timestamp": "desc"
    }
  ]
}
      

{
"took": 2,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
  },
"hits": {
"total": {
"value": 3,
"relation": "eq"
    },
"max_score": null,
"hits": [
      {
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
"_type": "_doc",
"_id": "PdjWongB9KPnaVm2IyaL",
"_score": null,
"_source": {
"@timestamp": "2099-05-08T16:25:42.000Z",
"event": {
"original": "192.0.2.255 - - [08/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638"
          }
        },
"sort": [
4081940742000
        ]
      },
      ...
    ]
  }
}
      

6. 解析固定字段,去除一些字段:

GET logs-my_app-default/_search
{
"query": {
"match_all": { }
  },
"fields": [
"@timestamp"
  ],
"_source": false,
"sort": [
    {
"@timestamp": "desc"
    }
  ]
}

      

{
  ...
"hits": {
    ...
"hits": [
      {
"_index": ".ds-logs-my_app-default-2099-05-06-000001",
"_type": "_doc",
"_id": "PdjWongB9KPnaVm2IyaL",
"_score": null,
"fields": {
"@timestamp": [
"2099-05-08T16:25:42.000Z"
          ]
        },
"sort": [
4081940742000
        ]
      },
      ...
    ]
  }
}

      

​"fields"​

​挑選字段解析,​

​'_source':false,​

​該字段不再顯示

7. 範圍搜尋 ​

​range​

GET logs-my_app-default/_search
{
"query": {
"range": {
"@timestamp": {
"gte": "2099-05-05",
"lt": "2099-05-08"
      }
    }
  },
"fields": [
"@timestamp"
  ],
"_source": false,
"sort": [
    {
"@timestamp": "desc"
    }
  ]
}
      

查詢過去一天的資料

GET logs-my_app-default/_search
{
"query": {
"range": {
"@timestamp": {
"gte": "now-1d/d",
"lt": "now/d"
      }
    }
  },
"fields": [
"@timestamp"
  ],
"_source": false,
"sort": [
    {
"@timestamp": "desc"
    }
  ]
}

      

8. 建立 索引 ​

​Index​

PUT my_index
{
"mappings": 
  {
"properties": 
    {
"address":
      {
"type": "ip"
      },
"port":
      {
"type": "long"
      }
    }
  }
}
      

{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_index"
}
      

9. 将一些文檔加載到其中:

POST my_index/_bulk
{"index":{"_id":"1"}}
{"address":"1.2.3.4","port":"80"}
{"index":{"_id":"2"}}
{"address":"1.2.3.4","port":"8080"}
{"index":{"_id":"3"}}
{"address":"2.4.8.16","port":"80"}
      

傳回結果:

{
"took" : 8,
"errors" : false,
"items" : [
    {
"index" : {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
        },
"_seq_no" : 0,
"_primary_term" : 1,
"status" : 201
      }
    },
    {
"index" : {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
        },
"_seq_no" : 1,
"_primary_term" : 1,
"status" : 201
      }
    },
    {
"index" : {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "3",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
        },
"_seq_no" : 2,
"_primary_term" : 1,
"status" : 201
      }
    }
  ]
}
      

10. 使用靜态字元串建立兩個

GET my_index/_search
 {
"runtime_mappings": {
"socket": {
"type": "keyword",
"script": {
"source": "emit(doc['address'].value + ':' + doc['port'].value)"
       }
     }
   },
"fields": [
"socket"
   ],
"query": {
"match": {
"socket": "1.2.3.4:8080"
     }
   }
}

      

{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
  },
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
    },
"max_score" : 1.0,
"hits" : [
      {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"address" : "1.2.3.4",
"port" : "8080"
        },
"fields" : {
"socket" : [
"1.2.3.4:8080"
          ]
        }
      }
    ]
  }
}

      

上面代碼中,傳回結果的 ​

​took​

​字段表示該操作的耗時(機關為毫秒),​

​timed_out​

​字段表示是否逾時,​

​hits​

​字段表示命中的記錄,裡面子字段的含義如下:

  • ​total​

    ​:傳回記錄數,本例是2條。
  • ​max_score​

    ​:最高的比對程度,本例是1.0。
  • ​hits​

    ​:傳回的記錄組成的數組。

傳回的資料中,​

​found​

​字段表示查詢成功,​

​_source​

​字段傳回原始記錄。

我們在 ​

​runtime_mappings​

​ 部分中定義了字段 ​

​socket​

​。 我們使用了一個簡短的 ​

​painless script​

​,該腳本定義了每個文檔将如何計算 ​

​socket​

​ 的值(使用 + 表示 ​

​address​

​ 字段的值與靜态字元串 “:” 和 ​

​port​

​ 字段的值的串聯)。 然後,我們在查詢中使用了字段 ​

​socket​

​。 字段 ​

​socket​

​ 是一個臨時運作時字段,僅對于該查詢存在,并且在運作查詢時進行計算。 在定義要與 ​

​runtime fields​

​ 一起使用的 ​

​painless script​

​ 時,必須包括 ​

​emit​

​ 以傳回計算出的值。

​socket​

​ :運作時加入的字段。​

​source​

​, ​

​id​

官方文檔:​

​The script itself, which you specify as source for an inline script or id for a stored script. Use the stored script APIs to create and manage stored scripts.​

​"source": "emit(doc['address'].value + ':' + doc['port'].value)" 為内嵌腳本​

11. 如果我們發現 ​

​socket​

​ 是一個我們想在多個查詢中使用的字段,而不必為每個查詢定義它,則可以通過調用簡單地将其添加到映射中:

PUT my_index/_mapping
 {
"runtime": {
"socket": {
"type": "keyword",
"script": {
"source": "emit(doc['address'].value + ':' + doc['port'].value)"
       }
     } 
   } 
}
      

結果:

{
"acknowledged" : true
}
      

此時在​

​Index mapping​

​ 檔案裡已經存在​

​socket​

​字段,然後查詢,不必在運作時定義包含 ​

​socket​

​ 字段,例如

GET my_index/_search
{
"fields": [
"socket"
  ],
"query": {
"match": {
"socket": "1.2.3.4:8080"
    }
  }
}
      

結果(和使用靜态字元串建立兩個結果一樣):

{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
  },
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
    },
"max_score" : 1.0,
"hits" : [
      {
"_index" : "my_index",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"address" : "1.2.3.4",
"port" : "8080"
        },
"fields" : {
"socket" : [
"1.2.3.4:8080"
          ]
        }
      }
    ]
  }
}

      

僅在要顯示 ​

​socket​

​ 字段的值時才需要語句 ​

​"fields": ["socket"]​

​。 現在,字段查詢可用于任何查詢,但它不存在于索引中,并且不會增加索引的大小。 僅在查詢需要 ​

​socket​

​ 以及需要它的文檔時才計算 ​

​socket​

12. ​

​runtime​

​和 ​

​runtime_mapping​

​差別:

使用​

​runtime​

​ 時定義的字段會存儲到​

​Index​

​映射中,而​

​runtime_mapping​

​ 定義的字段隻存在運作查詢中。

映射字段:​

​https://www.elastic.co/guide/en/elasticsearch/reference/7.11/runtime-mapping-fields.html#runtime-mapping-fields​

請求字段: ​

​https://www.elastic.co/guide/en/elasticsearch/reference/7.11/runtime-search-request.html#runtime-search-request​

13. 在查詢時覆寫字段值

PUT my_raw_index
{
"mappings": {
"properties": {
"raw_message": {
"type": "keyword"
      },
"address": {
"type": "ip"
      }
    }
  }
}

      

{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_raw_index"
}
      

繼續閱讀