目的
在時序分析時,我們經常需要将原始序列進行差分,然後做出拟合或者預測,最後還需要将拟合的或者預測的值恢複成原始序列。這裡,使用Pandas的Series中的diff和cumsum函數可以友善的實作。
一次一階差分的恢複
import pandas as pd
time_series = pd.Series([2,4,3,5,6,7,4,5,6,3,2,4], index=pd.date_range(start='2000', periods=12, freq='a'))
time_series_diff = time_series.diff(1).dropna()
time_series_restored = pd.Series([time_series[0]], index=[time_series.index[0]]) .append(time_series_diff).cumsum()
time_series_restored
多次一階差分的恢複
time_series = pd.Series([2,4,3,5,6,7,4,5,6,3,2,4], index=pd.date_range(start='2000', periods=12, freq='a'))
time_series_diff = time_series
diff_times = 3
first_values = []
for i in range(1, diff_times+1):
first_values.append(pd.Series([time_series_diff[0]],index=[time_series_diff.index[0]]))
time_series_diff = time_series_diff.diff(1).dropna()
time_series_restored = time_series_diff
for first in reversed(first_values):
time_series_restored = first.append(time_series_restored).cumsum()
time_series_restored
原理
其實就是使用cumsum累計求和函數。保留每次一階差分前的第一個值,然後反序再加回來。
時序問題中,如果預測的是一階的增量,那麼就需要恢複原始的序列。