天天看點

Java 資料分批調用接口的正确姿勢

一、背景

現實業務開發中,通常為了避免逾時、對方接口限制等原因需要對支援批量的接口的資料分批調用。

比如List參數的size可能為 幾十個甚至上百個,但是假如對方dubbo接口比較慢,傳入50個以上會逾時,那麼可以每次傳入20個,分批執行。

通常很多人會寫 for 循環或者 while 循環,非常不優雅,無法複用,而且容易出錯。

下面結合 Java8 的 Stream ,Function ,Consumer 等特性實作分批調用的工具類封裝和自測。

并給出 CompletableFuture 的異步改進方案。

二、實作

工具類:

package com.chujianyun.common.java8.function;

import com.google.common.base.Preconditions;

import com.google.common.collect.Lists;

import org.apache.commons.collections4.CollectionUtils;

import java.util.*;

import java.util.function.Consumer;

import java.util.function.Function;

/**

  • 執行工具類

*

  • @author 明明如月

*/

public class ExecuteUtil {

public static <T> void partitionRun(List<T> dataList, int size, Consumer<List<T>> consumer) {
    if (CollectionUtils.isEmpty(dataList)) {
        return;
    }
    Preconditions.checkArgument(size > 0, "size must not be a minus");
    Lists.partition(dataList, size).forEach(consumer);
}

public static <T, V> List<V> partitionCall2List(List<T> dataList, int size, Function<List<T>, List<V>> function) {

    if (CollectionUtils.isEmpty(dataList)) {
        return new ArrayList<>(0);
    }
    Preconditions.checkArgument(size > 0, "size must not be a minus");

    return Lists.partition(dataList, size)
            .stream()
            .map(function)
            .filter(Objects::nonNull)
            .reduce(new ArrayList<>(),
                    (resultList1, resultList2) -> {
                        resultList1.addAll(resultList2);
                        return resultList1;
                    });


}

public static <T, V> Map<T, V> partitionCall2Map(List<T> dataList, int size, Function<List<T>, Map<T, V>> function) {
    if (CollectionUtils.isEmpty(dataList)) {
        return new HashMap<>(0);
    }
    Preconditions.checkArgument(size > 0, "size must not be a minus");
    return Lists.partition(dataList, size)
            .stream()
            .map(function)
            .filter(Objects::nonNull)
            .reduce(new HashMap<>(),
                    (resultMap1, resultMap2) -> {
                        resultMap1.putAll(resultMap2);
                        return resultMap1;
                    });


}           

}

待調用的服務(模拟)

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

public class SomeManager {

public void aRun(Long id, List<String> data) {

}

public List<Integer> aListMethod(Long id, List<String> data) {
    return new ArrayList<>(0);
}

public Map<String, Integer> aMapMethod(Long id, List<String> data) {
    return new HashMap<>(0);
}           

單元測試:

import org.apache.commons.lang3.RandomUtils;

import org.jeasy.random.EasyRandom;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.mockito.internal.verification.Times;

import org.powermock.api.mockito.PowerMockito;

import org.powermock.modules.junit4.PowerMockRunner;

import java.util.stream.Collectors;

import java.util.stream.Stream;

import static org.mockito.ArgumentMatchers.any;

import static org.mockito.ArgumentMatchers.anyLong;

@RunWith(PowerMockRunner.class)

public class ExecuteUtilTest {

private EasyRandom easyRandom = new EasyRandom();

@Mock
private SomeManager someManager;

// 測試資料
private List<String> mockDataList;

private int total = 30;

@Before
public void init() {
    // 構造30條資料
    mockDataList = easyRandom.objects(String.class, 30).collect(Collectors.toList());

}

@Test
public void test_a_run_partition() {
    // mock aRun
    PowerMockito.doNothing().when(someManager).aRun(anyLong(), any());

    // 每批 10 個
    ExecuteUtil.partitionRun(mockDataList, 10, (eachList) -> someManager.aRun(1L, eachList));

    //驗證執行了 3 次
    Mockito.verify(someManager, new Times(3)).aRun(anyLong(), any());
}


@Test
public void test_call_return_list_partition() {
    // mock  每次調用傳回條數(注意每次調用都是這2個)
    int eachReturnSize = 2;
    PowerMockito
            .doReturn(easyRandom.objects(String.class, eachReturnSize).collect(Collectors.toList()))
            .when(someManager)
            .aListMethod(anyLong(), any());

    // 分批執行
    int size = 4;
    List<Integer> resultList = ExecuteUtil.partitionCall2List(mockDataList, size, (eachList) -> someManager.aListMethod(2L, eachList));

    //驗證執行次數
    int invocations = 8;
    Mockito.verify(someManager, new Times(invocations)).aListMethod(anyLong(), any());

    // 正好幾輪
    int turns;
    if (total % size == 0) {
        turns = total / size;
    } else {
        turns = total / size + 1;
    }
    Assert.assertEquals(turns * eachReturnSize, resultList.size());
}


@Test
public void test_call_return_map_partition() {
    // mock  每次調用傳回條數
    // 注意:
    // 如果僅調用doReturn一次,那麼每次傳回都是key相同的Map,
    // 如果需要不覆寫,則doReturn次數和 invocations 相同)
    int eachReturnSize = 3;
    PowerMockito
            .doReturn(mockMap(eachReturnSize))
            .doReturn(mockMap(eachReturnSize))
            .when(someManager).aMapMethod(anyLong(), any());

    // 每批
    int size = 16;
    Map<String, Integer> resultMap = ExecuteUtil.partitionCall2Map(mockDataList, size, (eachList) -> someManager.aMapMethod(2L, eachList));

    //驗證執行次數
    int invocations = 2;
    Mockito.verify(someManager, new Times(invocations)).aMapMethod(anyLong(), any());

    // 正好幾輪
    int turns;
    if (total % size == 0) {
        turns = total / size;
    } else {
        turns = total / size + 1;
    }
    Assert.assertEquals(turns * eachReturnSize, resultMap.size());
}

private Map<String, Integer> mockMap(int size) {
    Map<String, Integer> result = new HashMap<>(size);
    for (int i = 0; i < size; i++) {
           

// 極力保證key不重複

result.put(easyRandom.nextObject(String.class) + RandomUtils.nextInt(), easyRandom.nextInt());
    }
    return result;
}

           

注意:

1 判空

.filter(Objects::nonNull)

這裡非常重要,避免又一次調用傳回 null,而導緻空指針異常。

2 實際使用時可以結合apollo配置, 靈活設定每批執行的數量,如果逾時随時調整

3 用到的類庫

集合工具類: commons-collections4、guava (可以不用)

這裡的list劃分子list也可以使用stream的 skip ,limit特性自己去做,集合判空也可以不借助collectionutils.

構造資料:easy-random

單元測試架構: Junit4 、 powermockito、mockito

4 大家可以加一些更強大的功能,如允許設定每次調用的時間間隔、并行或并發調用等。

三、改進

以上面的List接口為例,将其改為異步版本:

public static <T, V> List<V> partitionCall2ListAsync(List<T> dataList,
                                                     int size,
                                                     ExecutorService executorService,
                                                     Function<List<T>, List<V>> function) {

    if (CollectionUtils.isEmpty(dataList)) {
        return new ArrayList<>(0);
    }
    Preconditions.checkArgument(size > 0, "size must not be a minus");

    List<CompletableFuture<List<V>>> completableFutures = Lists.partition(dataList, size)
            .stream()
            .map(eachList -> {
                if (executorService == null) {
                    return CompletableFuture.supplyAsync(() -> function.apply(eachList));
                } else {
                    return CompletableFuture.supplyAsync(() -> function.apply(eachList), executorService);
                }

            })
            .collect(Collectors.toList());


    CompletableFuture<Void> allFinished = CompletableFuture.allOf(completableFutures.toArray(new CompletableFuture[0]));
    try {
        allFinished.get();
    } catch (Exception e) {
        throw new RuntimeException(e);
    }
    return completableFutures.stream()
            .map(CompletableFuture::join)
            .filter(CollectionUtils::isNotEmpty)
            .reduce(new ArrayList<V>(), ((list1, list2) -> {
                List<V> resultList = new ArrayList<>();
                if(CollectionUtils.isNotEmpty(list1)){
                   resultList.addAll(list1);
                   }

                if(CollectionUtils.isNotEmpty(list2)){
                     resultList.addAll(list2);
                   }
                return resultList;
            }));
}           

測試代碼:

// 測試資料

private List<String> mockDataList;

private int total = 300;

private AtomicInteger atomicInteger;

@Before
public void init() {
    // 構造total條資料
    mockDataList = easyRandom.objects(String.class, total).collect(Collectors.toList());

}


           

@Test

public void test_call_return_list_partition_async() {

ExecutorService executorService = Executors.newFixedThreadPool(10);

    atomicInteger = new AtomicInteger(0);
    Stopwatch stopwatch = Stopwatch.createStarted();
    // 分批執行
    int size = 2;
    List<Integer> resultList = ExecuteUtil.partitionCall2ListAsync(mockDataList, size, executorService, (eachList) -> someCall(2L, eachList));

    Stopwatch stop = stopwatch.stop();
    log.info("執行時間: {} 秒", stop.elapsed(TimeUnit.SECONDS));

    Assert.assertEquals(total, resultList.size());
    // 正好幾輪
    int turns;
    if (total % size == 0) {
        turns = total / size;
    } else {
        turns = total / size + 1;
    }
    log.info("共調用了{}次", turns);
    Assert.assertEquals(turns, atomicInteger.get());

  // 順序也一緻
    for(int i =0; i< mockDataList.size();i++){
        Assert.assertEquals((Integer) mockDataList.get(i).length(), resultList.get(i));
    }
}

           
* 模拟一次調用
 */
private List<Integer> someCall(Long id, List<String> strList) {

    log.info("目前-->{},strList.size:{}", atomicInteger.incrementAndGet(), strList.size());
    try {
        TimeUnit.SECONDS.sleep(2L);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    return strList.stream()
            .map(String::length)
            .collect(Collectors.toList());
}           

通過異步可以盡可能快得拿到執行結果。

四、總結

1 要靈活運用Java 8 的 特性簡化代碼

2 要注意代碼的封裝來使代碼更加優雅,複用性更強

3 要利用來構造單元測試的資料架構如 java-faker和easy-random來提高構造資料的效率

4 要了解性能改進的常見思路:合并請求、并發、并行、緩存等。