背景
2020疫情無情,多數企業是以受挫,特别中小企業,甚至到了要裁員的地步, 但是人才是最寶貴的,裁員一定是下下策,如何渡過這個難關,疫情帶給我們什麼反思?
開源節流有新方法,通常資料庫在企業IT支出中的占比将近一半,降低資料庫成本對降低企業IT成本效果明顯,但是一般企業沒有專業DBA,很難在這方面下手,不過沒關系,有了雲廠商,一切變得簡單。借助阿裡雲我們找到了可以為企業IT節省至少一倍成本的方法.
到底時什麼方法呢? 回顧一下年前做的一系列MySQL+PG聯合解決方案的課程.
《阿裡雲 RDS PostgreSQL+MySQL 聯合解決方案課程 - 彙總視訊、課件》在衆多資料庫中, PG是一個企業級的開源資料庫, 各方面的功能與Oracle對齊, 适合範圍廣, 能處理的資料量龐大. 采用PG的大型企業例如平安,郵儲銀行,阿裡,華為,中興,人保, 招商, 富士康, 蘋果, SAP, saleforce等以及全球财富1000強等衆多企業。
《外界對PostgreSQL 的評價》阿裡雲RDS PG的優勢:
- 支援完整生命周期管理,包括高可用, 容災, 備份, 安全, 審計, 加密, cloud dba等子產品, 大幅降低企業的使用和管理成本.
- 專業核心和DBA團隊 7*24小時服務.
- 支援并行計算,LLVM,GPU加速,向量計算,分析能力更強。
- PG的優化器強大,應對複雜SQL處理效率更高,适合複雜業務場景, 更适合新零售、制造業、工業、線上教育、遊戲、金融、政府、企業ERP等行業或領域。
- 核心擴充, 根據垂直領域的需求定制化。
- Ganos插件, GIS功能更強更專業,支援平面、球面幾何,栅格,時空軌迹,點雲,拓撲網絡模型。
- pase插件, 支援高維向量搜尋, 支援精确的圖像搜尋, 人臉識别, 相似查詢.
- roaringbitmap插件, 支援實時大資料使用者畫像, 精準營銷.
- rdkit插件, 支援化學分析, 分子式的相似搜尋, 化學機器學習等.
- 多模能力更強,其表現在索引更豐富,除了btree,hash還支援gin,gist,spgist,brin,bloom,rum等索引接口,适合模糊搜尋,全文檢索,多元任意搜尋,時空搜尋,高維向量(廣泛應用于圖像識别、相似特征擴選,時序搜尋,使用者畫像,化學分析,DNA檢索等。
- 類型更加豐富,同時支援擴充類型,除了基本類型以外,支援網絡、全文檢索、數組、xml、JSON、範圍、域、樹、多元、分子、GIS等類型。支援更豐富的應用場景。
-
支援oss_fdw, 可以将資料庫的歸檔資料存儲在oss中, 降低成本, 并且通路方法不變.
本文将對PG和MySQL進行多方位對比, 在某些方面PG的綜合性能比MySQL高出一個數量級, PG+MySQL結合使用, 可以大幅降低企業成本.
疫情無情PG有情, 别裁員了, 建立多元化的技術棧, 強化企業IT能力更重要.
環境
申請阿裡雲RDS PG 12執行個體, 8核32G 1500G ESSD
同硬體配置的MySQL 8.0
使用者密碼:
user123
xxxxxx!
庫:
db1
連接配接串:
PG:
export PGPASSWORD=xxxxxx!
psql -h pgm-bp1z26gbo3gx893a129310.pg.rds.aliyuncs.com -p 1433 -U user123 db1
MySQL:
mysql -h rm-bp1wv992ym962k85888370.mysql.rds.aliyuncs.com -P 3306 -u user123 --password=xxxxxx! -D db1
測試用的用戶端ecs centos 7.x x64安裝mysql, pg用戶端
yum install -y mysql-*
yum install https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm
yum install -y postgresql12
MySQL 8.0測試
測試表
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
birth TIMESTAMP,
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
);
批量寫入存儲過程
DROP PROCEDURE IF EXISTS BatchInsert;
delimiter // -- 把界定符改成雙斜杠
CREATE PROCEDURE BatchInsert(IN init INT, IN loop_time INT) -- 第一個參數為初始ID号(可自定義),第二個位生成MySQL記錄個數
BEGIN
DECLARE Var INT;
DECLARE ID INT;
SET Var = 0;
SET ID = init;
WHILE Var < loop_time DO
insert into employees
(id, fname, lname, birth, hired, separated, job_code, store_id)
values
(ID, CONCAT('chen', ID), CONCAT('haixiang', ID), Now(), Now(), Now(), 1, ID);
SET ID = ID + 1;
SET Var = Var + 1;
END WHILE;
END;
//
delimiter ; -- 界定符改回分号
批量寫入20萬條
-- 開啟事務插入,否則會很慢
begin;
CALL BatchInsert(1, 200000);
commit;
Query OK, 1 row affected (7.53 sec)
使用insert into繼續批量寫入
mysql> insert into employees select * from employees;
Query OK, 200000 rows affected (1.61 sec)
Records: 200000 Duplicates: 0 Warnings: 0
mysql> insert into employees select * from employees;
Query OK, 400000 rows affected (3.25 sec)
Records: 400000 Duplicates: 0 Warnings: 0
mysql> insert into employees select * from employees;
Query OK, 800000 rows affected (6.51 sec)
Records: 800000 Duplicates: 0 Warnings: 0
mysql> insert into employees select * from employees;
Query OK, 1600000 rows affected (12.93 sec)
Records: 1600000 Duplicates: 0 Warnings: 0
mysql> insert into employees select * from employees;
Query OK, 3200000 rows affected (28.61 sec)
Records: 3200000 Duplicates: 0 Warnings: 0
mysql> insert into employees select * from employees;
Query OK, 6400000 rows affected (56.48 sec)
Records: 6400000 Duplicates: 0 Warnings: 0
mysql> insert into employees select * from employees;
Query OK, 12800000 rows affected (1 min 55.30 sec)
Records: 12800000 Duplicates: 0 Warnings: 0
查詢性能
mysql> select count(*) from employees;
+----------+
| count(*) |
+----------+
| 25600000 |
+----------+
1 row in set (6.15 sec)
求distinct性能
mysql> select count(distinct id) from employees ;
+--------------------+
| count(distinct id) |
+--------------------+
| 200000 |
+--------------------+
1 row in set (16.67 sec)
分組求distinct性能
mysql> select count(*) from (select id from employees group by id) t;
+----------+
| count(*) |
+----------+
| 200000 |
+----------+
1 row in set (15.52 sec)
再寫入200萬
begin;
CALL BatchInsert(1, 2000000);
commit;
測試表2, 寫入200萬.
CREATE TABLE employees1 (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
birth TIMESTAMP,
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
);
DROP PROCEDURE IF EXISTS BatchInser1;
delimiter // -- 把界定符改成雙斜杠
CREATE PROCEDURE BatchInsert1(IN init INT, IN loop_time INT) -- 第一個參數為初始ID号(可自定義),第二個位生成MySQL記錄個數
BEGIN
DECLARE Var INT;
DECLARE ID INT;
SET Var = 0;
SET ID = init;
WHILE Var < loop_time DO
insert into employees1
(id, fname, lname, birth, hired, separated, job_code, store_id)
values
(ID, CONCAT('chen', ID), CONCAT('haixiang', ID), Now(), Now(), Now(), 1, ID);
SET ID = ID + 1;
SET Var = Var + 1;
END WHILE;
END;
//
delimiter ; -- 界定符改回分号
使用loop insert寫入200萬行
-- 開啟事務插入,否則會很慢
begin;
CALL BatchInsert1(1, 2000000);
commit;
Query OK, 1 row affected (1 min 7.06 sec)
2560萬 多對一JOIN 200萬, 分組,排序
select t1.lname,count(*) from employees t1 join employees1 t2 using (id) group by t1.lname order by count(*) desc,lname limit 10;
簡單查詢性能(因為以上查詢幾個小時都沒有出結果, 不得不建立一個200萬的表進行查詢測試):
CREATE TABLE employees2 (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
birth TIMESTAMP,
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
);
DROP PROCEDURE IF EXISTS BatchInser2;
delimiter // -- 把界定符改成雙斜杠
CREATE PROCEDURE BatchInsert2(IN init INT, IN loop_time INT) -- 第一個參數為初始ID号(可自定義),第二個位生成MySQL記錄個數
BEGIN
DECLARE Var INT;
DECLARE ID INT;
SET Var = 0;
SET ID = init;
WHILE Var < loop_time DO
insert into employees2
(id, fname, lname, birth, hired, separated, job_code, store_id)
values
(ID, CONCAT('chen', ID), CONCAT('haixiang', ID), Now(), Now(), Now(), 1, ID);
SET ID = ID + 1;
SET Var = Var + 1;
END WHILE;
END;
//
delimiter ; -- 界定符改回分号
-- 開啟事務插入,否則會很慢
begin;
CALL BatchInsert2(1, 2000000);
commit;
Query OK, 1 row affected (1 min 7.06 sec)
建立索引
create index idx_employees2_1 on employees2(id);
建立查詢存儲過程, 查詢200萬次.
DROP PROCEDURE IF EXISTS select1;
delimiter // -- 把界定符改成雙斜杠
CREATE PROCEDURE select1(IN init INT, IN loop_time INT) -- 第一個參數為初始ID号(可自定義),第二個位生成MySQL記錄個數
BEGIN
DECLARE Var INT;
DECLARE ID1 INT;
DECLARE vid INT;
DECLARE vfname VARCHAR(30);
DECLARE vlname VARCHAR(30);
DECLARE vbirth TIMESTAMP;
DECLARE vhired DATE;
DECLARE vseparated DATE;
DECLARE vjob_code INT;
DECLARE vstore_id INT;
SET Var = 0;
SET ID1 = init;
WHILE Var < loop_time DO
select t.id,t.fname,t.lname,t.birth,t.hired,t.separated,t.job_code,t.store_id
into
vid,vfname,vlname,vbirth,vhired,vseparated,vjob_code,vstore_id
from employees2 t
where t.id=id1;
SET ID1 = ID1 + 1;
SET Var = Var + 1;
END WHILE;
END;
//
delimiter ; -- 界定符改回分号
基于KEY簡單查詢, 查詢200萬次的耗時.
-- 開啟事務查詢
begin;
CALL select1(1, 2000000);
commit;
Query OK, 1 row affected (1 min 10.23 sec)
MySQL 1億+:
繼續測試到1億資料量.
mysql> insert into employees select * from employees;
Query OK, 27600000 rows affected (4 min 38.62 sec)
Records: 27600000 Duplicates: 0 Warnings: 0
mysql> insert into employees select * from employees;
Query OK, 55200000 rows affected (11 min 13.40 sec)
Records: 55200000 Duplicates: 0 Warnings: 0
mysql> select count(*) from employees;
+-----------+
| count(*) |
+-----------+
| 110400000 |
+-----------+
1 row in set (28.00 sec)
mysql> select count(distinct id) from employees ;
+--------------------+
| count(distinct id) |
+--------------------+
| 2000000 |
+--------------------+
1 row in set (1 min 17.73 sec)
mysql> select count(*) from (select id from employees group by id) t;
+----------+
| count(*) |
+----------+
| 2000000 |
+----------+
1 row in set (1 min 24.64 sec)
1.1億全量資料更新
mysql> update employees set lname=lname||'new';
Query OK, 110400000 rows affected, 65535 warnings (21 min 30.34 sec)
Rows matched: 110400000 Changed: 110400000 Warnings: 220800000
1.1億 多對一JOIN 200萬, 分組,排序, 超過3小時沒有查詢出結果.
select t1.lname,count(*) from employees t1 join employees1 t2 using (id) group by t1.lname order by count(*) desc,lname limit 10;
1.1億建立索引
mysql> create index idx_employees_1 on employees(id);
Query OK, 0 rows affected (3 min 49.04 sec)
Records: 0 Duplicates: 0 Warnings: 0
阿裡雲RDS PostgreSQL 12測試
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
birth TIMESTAMP,
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
);
直接使用srf快速寫入20萬資料
\timing
insert into employees
(id, fname, lname, birth, hired, separated, job_code, store_id)
select
ID, CONCAT('chen', ID), CONCAT('haixiang', ID), Now(), Now(), Now(), 1, ID
from generate_series(1,200000) id;
INSERT 0 200000
Time: 355.652 ms
也可以使用和mysql一樣的方法loop insert寫入20萬
create or replace function BatchInsert(IN init INT, IN loop_time INT) -- 第一個參數為初始ID号(可自定義),第二個位生成記錄個數
returns void as $$
DECLARE
Var INT := 0;
begin
for id in init..init+loop_time-1 loop
insert into employees
(id, fname, lname, birth, hired, separated, job_code, store_id)
values
(ID, CONCAT('chen', ID), CONCAT('haixiang', ID), Now(), Now(), Now(), 1, ID);
end loop;
end;
$$ language plpgsql strict;
db1=# select batchinsert(1,200000);
batchinsert
-------------
(1 row)
Time: 1292.559 ms (00:01.293)
db1=> insert into employees select * from employees ;
INSERT 0 400000
Time: 322.335 ms
db1=> insert into employees select * from employees ;
INSERT 0 800000
Time: 835.365 ms
db1=> insert into employees select * from employees ;
INSERT 0 1600000
Time: 1622.475 ms (00:01.622)
db1=> insert into employees select * from employees ;
INSERT 0 3200000
Time: 3583.787 ms (00:03.584)
db1=> insert into employees select * from employees ;
INSERT 0 6400000
Time: 7277.764 ms (00:07.278)
db1=> insert into employees select * from employees ;
INSERT 0 12800000
Time: 15639.482 ms (00:15.639)
db1=> \dt+ employees
List of relations
Schema | Name | Type | Owner | Size | Description
--------+-----------+-------+---------+---------+-------------
public | employees | table | user123 | 2061 MB |
(1 row)
db1=> select count(*) from employees ;
count
----------
25600000
(1 row)
Time: 604.982 ms
db1=> select count(distinct id) from employees ;
count
--------
200000
(1 row)
Time: 7852.604 ms (00:07.853)
db1=> select count(*) from (select id from employees group by id) t;
count
--------
200000
(1 row)
Time: 2982.907 ms (00:02.983)
insert into employees
(id, fname, lname, birth, hired, separated, job_code, store_id)
select
ID, CONCAT('chen', ID), CONCAT('haixiang', ID), Now(), Now(), Now(), 1, ID
from generate_series(1,2000000) id;
CREATE TABLE employees1 (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
birth TIMESTAMP,
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
);
insert into employees1
(id, fname, lname, birth, hired, separated, job_code, store_id)
select
ID, CONCAT('chen', ID), CONCAT('haixiang', ID), Now(), Now(), Now(), 1, ID
from generate_series(1,2000000) id;
INSERT 0 2000000
Time: 3037.777 ms (00:03.038)
select t1.lname,count(*) from employees t1 join employees1 t2 using (id) group by t1.lname order by count(*) desc,lname limit 10;
lname | count
----------------+-------
haixiang1 | 129
haixiang10 | 129
haixiang100 | 129
haixiang1000 | 129
haixiang10000 | 129
haixiang100000 | 129
haixiang100001 | 129
haixiang100002 | 129
haixiang100003 | 129
haixiang100004 | 129
(10 rows)
Time: 8897.907 ms (00:08.898)
簡單查詢性能:
create index idx_employees1_1 on employees1(id);
CREATE INDEX
Time: 1436.346 ms (00:01.436)
do language plpgsql $$
declare
begin
for i in 1..2000000 loop
perform * from employees1 where id=i;
end loop;
end;
$$;
DO
Time: 9515.728 ms (00:09.516)
db1=> select 9515.728/2000000;
?column?
------------------------
0.00475786400000000000
(1 row)
PG 1億+:
db1=> INSERT INTO employees select * from employees;
INSERT 0 27600000
Time: 25050.665 ms (00:25.051)
db1=> INSERT INTO employees select * from employees;
INSERT 0 55200000
Time: 64726.430 ms (01:04.726)
db1=> select count(*) from employees;
count
-----------
110400000
(1 row)
Time: 7286.152 ms (00:07.286)
db1=> select count(distinct id) from employees;
count
---------
2000000
(1 row)
Time: 39783.068 ms (00:39.783)
db1=> select count(*) from (select id from employees group by id) t;
count
---------
2000000
(1 row)
Time: 14668.305 ms (00:14.668)
db1=> select t1.lname,count(*) from employees t1 join employees1 t2 using (id) group by t1.lname order by count(*) desc,lname limit 10;
lname | count
----------------+-------
haixiang1 | 516
haixiang10 | 516
haixiang100 | 516
haixiang1000 | 516
haixiang10000 | 516
haixiang100000 | 516
haixiang100001 | 516
haixiang100002 | 516
haixiang100003 | 516
haixiang100004 | 516
(10 rows)
Time: 33731.431 ms (00:33.731)
更新1.1億
db1=> update employees set lname=lname||'new';
UPDATE 110400000
Time: 385372.063 ms (06:25.372)
建立索引:
db1=> create index idx_employees_1 on employees(id);
CREATE INDEX
Time: 70450.491 ms (01:10.450)
MySQL vs PG 性能報表
8核32G 1500G essd雲盤, MySQL 8.0 vs PG 12
資料量 | sql | MySQL耗時 | PG耗時 | PG vs MySQL性能倍數 |
---|---|---|---|---|
20萬 | {寫入} 存儲過程loop insert | 7.53 s | 1.29 s | 5.84 |
{寫入} SRF insert | 不支援 | 0.36 s | - | |
40萬 | {寫入} INSERT INTO employees select * from employees; | 3.25 s | 0.32 s | 10.16 |
80萬 | 6.51 s | 0.84 s | 7.75 | |
160萬 | 12.93 s | 1.62 s | 7.95 | |
320萬 | 28.61 s | 3.58 s | 7.99 | |
640萬 | 56.48 s | 7.28 s | 7.76 | |
1280萬 | 115.30 s | 15.64 s | 7.37 | |
2760萬 | 278.62 s | 25.05 s | 11.12 | |
5520萬 | 673.40 s | 64.73 s | 10.40 | |
200萬 | {普通查詢} KV查詢200萬次. PS: 程序模型,建議實際應用時使用連接配接池,總連接配接控制在1000以内絕佳,未來支援内置線程池,幾萬連接配接完全沒問題. | 70.23 s | 9.52 s | 7.38 |
2560萬 | {複雜查詢} select count(*) from employees; | 6.15 s | 0.60 s | 10.25 |
{複雜查詢} select count(distinct id) from employees; | 16.67 s | 7.85 s | 2.12 | |
{複雜查詢} select count(*) from (select id from employees group by id) t; | 15.52 s | 2.98 s | 5.21 | |
1.1億 | 28 s | 7.29 s | 3.84 | |
77.73 s | 39.78 s | 1.95 | ||
84.64 s | 14.67 s | 5.77 | ||
2760萬 多對一JOIN 200萬 | {JOIN + 運算} select t1.lname,count(*) from employees t1 join employees1 t2 using (id) group by t1.lname order by count(*) desc,lname limit 10; | 超過3小時未出結果 | 8.90 s | 至少 1213.48 |
1.1億 多對一JOIN 200萬 | 33.73 s | 至少 320.19 | ||
{更新} update employees set lname=concat(lname,'new'); | 1290.34 s | 70.45 s | 18.32 | |
{建立索引} create index idx_employees_1 on employees(id); | 229.04 s | 3.25 |
通過以上測試, 在大多數場景中, 阿裡雲RDS PG相比MySQL的綜合性能提升了1個數量級, PG+MySQL結合使用可以大幅降低企業成本. 疫情無情PG有情, 别裁員了, 建立多元化的技術棧, 強化企業IT能力更重要.
更多應用場景和使用方法請參考回顧視訊, 包括如何将mysql資料同步到pg(dts):
- 2019.12.30 19:30 RDS PG産品概覽,如何與mysql結合使用
- 2019.12.31 19:30 如何連接配接PG,GUI(pgadmin, navicat, dms),cli的使用
- 2020.1.3 19:30 如何壓測PG資料庫、如何瞬間構造海量測試資料
- 2020.1.6 19:30 mysql與pg類型、文法、函數等對應關系
- 2020.1.7 19:30 如何将mysql資料同步到pg(dts)
- 2020.1.8 19:30 PG外部表妙用 - mysql_fdw, oss_fdw(直接讀寫mysql、冷熱分離)
- 2020.1.9 19:30 PG應用場景介紹 - 并行計算,實時分析
- 2020.1.10 19:30 PG應用場景介紹 - GIS
- 2020.1.13 19:30 PG應用場景介紹 - 使用者畫像、實時營銷系統
- 2020.1.14 19:30 PG應用場景介紹 - 多元搜尋
- 2020.1.15 19:30 PG應用場景介紹 - 向量計算、圖像搜尋
- 2020.1.16 19:30 PG應用場景介紹 - 全文檢索、模糊查詢
- 2020.1.17 19:30 pg 資料分析文法介紹
- 2020.1.18 19:30 pg 更多功能了解:擴充文法、索引、類型、存儲過程與函數。如何加入PG技術社群 阿裡雲PG免費試用活動進行中 , 請釘釘掃碼加入咨詢:
别裁員!别裁員!别裁員! 一招降低企業資料庫IT成本