天天看點

Spark Codegen淺析背景介紹Case StudySpark Codegen架構

作者:周克勇,花名一錘,阿裡巴巴計算平台事業部EMR團隊技術專家,大資料領域技術愛好者,對Spark有濃厚興趣和一定的了解,目前主要專注于EMR産品中開源計算引擎的優化工作。

背景介紹

SparkSQL的優越性能背後有兩大技術支柱:Optimizer和Runtime。前者緻力于尋找最優的執行計劃,後者則緻力于把既定的執行計劃盡可能快地執行出來。Runtime的多種優化可概括為兩個層面:

1. 全局優化。從提升全局資源使用率、消除資料傾斜、降低IO等角度做優化,包括自适應執行(Adaptive Execution), Shuffle Removal等。

2. 局部優化。優化具體的Task的執行效率,主要依賴Codegen技術,具體包括Expression級别和WholeStage級别的Codegen。

本文介紹Spark Codegen的技術原理。

Case Study

本節通過兩個具體case介紹Codegen的做法。

Expression級别

考慮下面的表達式計算:x + (1 + 2),用scala代碼表達如下:

Add(Attribute(x), Add(Literal(1), Literal(2)))           

文法樹如下:

Spark Codegen淺析背景介紹Case StudySpark Codegen架構

遞歸求值這棵文法樹的正常代碼如下:

tree.transformUp {
  case Attribute(idx) => Literal(row.getValue(idx))
  case Add(Literal(c1),Literal(c2)) => Literal(c1+c2)
  case Literal(c) => Literal(c)
}           

執行上述代碼需要做很多類型比對、虛函數調用、對象建立等額外邏輯,這些overhead遠超對表達式求值本身。

為了消除這些overhead,Spark Codegen直接拼成求值表達式的java代碼并進行即時編譯。具體分為三個步驟:

1. 代碼生成。根據文法樹生成java代碼,封裝在wrapper類中:

... // class wrapper
row.getValue(idx) + (1 + 2)
... // class wrapper           

2. 即時編譯。使用Janino架構把生成代碼編譯成class檔案。

3. 加載執行。最後加載并執行。

優化前後性能有數量級的提升。

Spark Codegen淺析背景介紹Case StudySpark Codegen架構

WholeStage級别

考慮如下的sql語句:

select count(*) from store_sales
where ss_item_sk=1000;           

生成的實體執行計劃如下:

Spark Codegen淺析背景介紹Case StudySpark Codegen架構

執行該計劃的正常做法是使用火山模型(vocano model),每個Operator都繼承了Iterator接口,其next()方法首先驅動上遊執行拿到輸入,然後執行自己的邏輯。代碼示例如下:

class Agg extends Iterator[Row] {
  def doAgg() {
    while (child.hasNext()) {
      val row = child.next();
      // do aggregation
      ...
    }
  }
  def next(): Row {
    if (!doneAgg) {
      doAgg();
    }
    return aggIter.next();
  }
}


class Filter extends Iterator[Row] {
  def next(): Row {
    var current = child.next()
    while (current != null && !predicate(current)) {
      current = child.next()
    }
    return current;
  }
}           

從上述代碼可知,火山模型會有大量類型轉換和虛函數調用。虛函數調用會導緻CPU分支預測失敗,進而導緻嚴重的性能回退。

為了消除這些overhead,Spark WholestageCodegen會為該實體計劃生成類型确定的java代碼,然後類似Expression的做法即時編譯和加載執行。本例生成的java代碼示例如下(非真實代碼,真實代碼片段見後文):

var count = 0
for (ss_item_sk in store_sales) {
  if (ss_item_sk == 1000) {
    count += 1
  }
}           

優化前後性能提升資料如下:

Spark Codegen淺析背景介紹Case StudySpark Codegen架構

Spark Codegen架構

Spark Codegen架構有三個核心組成部分

1. 核心接口/類

2. CodegenContext

3. Produce-Consume Pattern

接下來詳細介紹。

接口/類

四個核心接口:

1. CodegenSupport(接口)

實作該接口的Operator可以将自己的邏輯拼成java代碼。重要方法:

produce() // 輸出本節點産出Row的java代碼
consume() // 輸出本節點消費上遊節點輸入的Row的java代碼           

實作類包括但不限于: ProjectExec, FilterExec, HashAggregateExec, SortMergeJoinExec。

2. WholeStageCodegenExec(類)

CodegenSupport的實作類之一,Stage内部所有相鄰的實作CodegenSupport接口的Operator的融合,産出的代碼把所有被融合的Operator的執行邏輯封裝到一個Wrapper類中,該Wrapper類作為Janino即時compile的入參。

3. InputAdapter(類)

CodegenSupport的實作類之一,膠水類,用來連接配接WholeStageCodegenExec節點和未實作CodegenSupport的上遊節點。

4. BufferedRowIterator(接口)

WholeStageCodegenExec生成的java代碼的父類,重要方法:

public InternalRow next() // 傳回下一條Row
public void append(InternalRow row) // append一條Row           

CodegenContext

管理生成代碼的核心類。主要涵蓋以下功能:

1.命名管理。保證同一Scope内無變量名沖突。

2.變量管理。維護類變量,判斷變量類型(應該聲明為獨立變量還是壓縮到類型數組中),維護變量初始化邏輯等。

3.方法管理。維護類方法。

4.内部類管理。維護内部類。

5.相同表達式管理。維護相同子表達式,避免重複計算。

6.size管理。避免方法、類size過大,避免類變量數過多,進行比較拆分。如把表達式塊拆分成多個函數;把函數、變量定義拆分到多個内部類。

7.依賴管理。維護該類依賴的外部對象,如Broadcast對象、工具對象、度量對象等。

8.通用模闆管理。提供通用代碼模闆,如genComp, nullSafeExec等。

Produce-Consume Pattern

相鄰Operator通過Produce-Consume模式生成代碼。

Produce生成整體處理的架構代碼,例如aggregation生成的代碼架構如下:

if (!initialized) {
  # create a hash map, then build the aggregation hash map
  # call child.produce()
  initialized = true;
}
while (hashmap.hasNext()) {
  row = hashmap.next();
  # build the aggregation results
  # create variables for results
  # call consume(), which will call parent.doConsume()
   if (shouldStop()) return;
}           

Consume生成目前節點處理上遊輸入的Row的邏輯。如Filter生成代碼如下:

# code to evaluate the predicate expression, result is isNull1 and value2
if (!isNull1 && value2) {
  # call consume(), which will call parent.doConsume()
}           

下圖比較清晰地展示了WholestageCodegen生成java代碼的call graph:

Spark Codegen淺析背景介紹Case StudySpark Codegen架構

Case Study的示例,生成的真實代碼如下:

== Subtree 1 / 2 ==
*(2) HashAggregate(keys=[], functions=[count(1)], output=[count(1)#326L])
+- Exchange SinglePartition
   +- *(1) HashAggregate(keys=[], functions=[partial_count(1)], output=[count#329L])
      +- *(1) Project
         +- *(1) Filter (isnotnull(ss_item_sk#13L) && (ss_item_sk#13L = 1000))
            +- *(1) FileScan parquet [ss_item_sk#13L] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/home/admin/zhoukeyong/workspace/tpc/tpcds/data/parquet/10/store_sales/par..., PartitionFilters: [], PushedFilters: [IsNotNull(ss_item_sk), EqualTo(ss_item_sk,1000)], ReadSchema: struct<ss_item_sk:bigint>

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage2(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=2
/* 006 */ final class GeneratedIteratorForCodegenStage2 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean agg_initAgg_0;
/* 010 */   private boolean agg_bufIsNull_0;
/* 011 */   private long agg_bufValue_0;
/* 012 */   private scala.collection.Iterator inputadapter_input_0;
/* 013 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] agg_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[1];
/* 014 */
/* 015 */   public GeneratedIteratorForCodegenStage2(Object[] references) {
/* 016 */     this.references = references;
/* 017 */   }
/* 018 */
/* 019 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 020 */     partitionIndex = index;
/* 021 */     this.inputs = inputs;
/* 022 */
/* 023 */     inputadapter_input_0 = inputs[0];
/* 024 */     agg_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 025 */
/* 026 */   }
/* 027 */
/* 028 */   private void agg_doAggregateWithoutKey_0() throws java.io.IOException {
/* 029 */     // initialize aggregation buffer
/* 030 */     agg_bufIsNull_0 = false;
/* 031 */     agg_bufValue_0 = 0L;
/* 032 */
/* 033 */     while (inputadapter_input_0.hasNext() && !stopEarly()) {
/* 034 */       InternalRow inputadapter_row_0 = (InternalRow) inputadapter_input_0.next();
/* 035 */       long inputadapter_value_0 = inputadapter_row_0.getLong(0);
/* 036 */
/* 037 */       agg_doConsume_0(inputadapter_row_0, inputadapter_value_0);
/* 038 */       if (shouldStop()) return;
/* 039 */     }
/* 040 */
/* 041 */   }
/* 042 */
/* 043 */   private void agg_doConsume_0(InternalRow inputadapter_row_0, long agg_expr_0_0) throws java.io.IOException {
/* 044 */     // do aggregate
/* 045 */     // common sub-expressions
/* 046 */
/* 047 */     // evaluate aggregate function
/* 048 */     long agg_value_3 = -1L;
/* 049 */     agg_value_3 = agg_bufValue_0 + agg_expr_0_0;
/* 050 */     // update aggregation buffer
/* 051 */     agg_bufIsNull_0 = false;
/* 052 */     agg_bufValue_0 = agg_value_3;
/* 053 */
/* 054 */   }
/* 055 */
/* 056 */   protected void processNext() throws java.io.IOException {
/* 057 */     while (!agg_initAgg_0) {
/* 058 */       agg_initAgg_0 = true;
/* 059 */       long agg_beforeAgg_0 = System.nanoTime();
/* 060 */       agg_doAggregateWithoutKey_0();
/* 061 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);
/* 062 */
/* 063 */       // output the result
/* 064 */
/* 065 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
/* 066 */       agg_mutableStateArray_0[0].reset();
/* 067 */
/* 068 */       agg_mutableStateArray_0[0].zeroOutNullBytes();
/* 069 */
/* 070 */       agg_mutableStateArray_0[0].write(0, agg_bufValue_0);
/* 071 */       append((agg_mutableStateArray_0[0].getRow()));
/* 072 */     }
/* 073 */   }
/* 074 */
/* 075 */ }

== Subtree 2 / 2 ==
*(1) HashAggregate(keys=[], functions=[partial_count(1)], output=[count#329L])
+- *(1) Project
   +- *(1) Filter (isnotnull(ss_item_sk#13L) && (ss_item_sk#13L = 1000))
      +- *(1) FileScan parquet [ss_item_sk#13L] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/home/admin/zhoukeyong/workspace/tpc/tpcds/data/parquet/10/store_sales/par..., PartitionFilters: [], PushedFilters: [IsNotNull(ss_item_sk), EqualTo(ss_item_sk,1000)], ReadSchema: struct<ss_item_sk:bigint>

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean agg_initAgg_0;
/* 010 */   private boolean agg_bufIsNull_0;
/* 011 */   private long agg_bufValue_0;
/* 012 */   private long scan_scanTime_0;
/* 013 */   private boolean outputMetaColumns;
/* 014 */   private int scan_batchIdx_0;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] scan_mutableStateArray_3 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[3];
/* 016 */   private org.apache.spark.sql.vectorized.ColumnarBatch[] scan_mutableStateArray_1 = new org.apache.spark.sql.vectorized.ColumnarBatch[1];
/* 017 */   private scala.collection.Iterator[] scan_mutableStateArray_0 = new scala.collection.Iterator[1];
/* 018 */   private org.apache.spark.sql.execution.vectorized.OffHeapColumnVector[] scan_mutableStateArray_2 = new org.apache.spark.sql.execution.vectorized.OffHeapColumnVector[1];
/* 019 */
/* 020 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */
/* 028 */     scan_mutableStateArray_0[0] = inputs[0];
/* 029 */     outputMetaColumns = false;
/* 030 */     scan_mutableStateArray_3[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 031 */     scan_mutableStateArray_3[1] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 032 */     scan_mutableStateArray_3[2] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 033 */
/* 034 */   }
/* 035 */
/* 036 */   private void agg_doAggregateWithoutKey_0() throws java.io.IOException {
/* 037 */     // initialize aggregation buffer
/* 038 */     agg_bufIsNull_0 = false;
/* 039 */     agg_bufValue_0 = 0L;
/* 040 */
/* 041 */     if (scan_mutableStateArray_1[0] == null) {
/* 042 */       scan_nextBatch_0();
/* 043 */     }
/* 044 */     while (scan_mutableStateArray_1[0] != null) {
/* 045 */       int scan_numRows_0 = scan_mutableStateArray_1[0].numRows();
/* 046 */       int scan_localEnd_0 = scan_numRows_0 - scan_batchIdx_0;
/* 047 */       for (int scan_localIdx_0 = 0; scan_localIdx_0 < scan_localEnd_0; scan_localIdx_0++) {
/* 048 */         int scan_rowIdx_0 = scan_batchIdx_0 + scan_localIdx_0;
/* 049 */         if (!scan_mutableStateArray_1[0].validAt(scan_rowIdx_0)) { continue; }
/* 050 */         do {
/* 051 */           boolean scan_isNull_0 = scan_mutableStateArray_2[0].isNullAt(scan_rowIdx_0);
/* 052 */           long scan_value_0 = scan_isNull_0 ? -1L : (scan_mutableStateArray_2[0].getLong(scan_rowIdx_0));
/* 053 */
/* 054 */           if (!(!scan_isNull_0)) continue;
/* 055 */
/* 056 */           boolean filter_value_2 = false;
/* 057 */           filter_value_2 = scan_value_0 == 1000L;
/* 058 */           if (!filter_value_2) continue;
/* 059 */
/* 060 */           ((org.apache.spark.sql.execution.metric.SQLMetric) references[2] /* numOutputRows */).add(1);
/* 061 */
/* 062 */           agg_doConsume_0();
/* 063 */
/* 064 */         } while(false);
/* 065 */         // shouldStop check is eliminated
/* 066 */       }
/* 067 */       scan_batchIdx_0 = scan_numRows_0;
/* 068 */       scan_mutableStateArray_1[0] = null;
/* 069 */       scan_nextBatch_0();
/* 070 */     }
/* 071 */     ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* scanTime */).add(scan_scanTime_0 / (1000 * 1000));
/* 072 */     scan_scanTime_0 = 0;
/* 073 */
/* 074 */   }
/* 075 */
/* 076 */   private void scan_nextBatch_0() throws java.io.IOException {
/* 077 */     long getBatchStart = System.nanoTime();
/* 078 */     if (scan_mutableStateArray_0[0].hasNext()) {
/* 079 */       scan_mutableStateArray_1[0] = (org.apache.spark.sql.vectorized.ColumnarBatch)scan_mutableStateArray_0[0].next();
/* 080 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(scan_mutableStateArray_1[0].numRows());
/* 081 */       scan_batchIdx_0 = 0;
/* 082 */       scan_mutableStateArray_2[0] = (org.apache.spark.sql.execution.vectorized.OffHeapColumnVector) (outputMetaColumns ?
/* 083 */         scan_mutableStateArray_1[0].column(0, true) : scan_mutableStateArray_1[0].column(0));
/* 084 */
/* 085 */     }
/* 086 */     scan_scanTime_0 += System.nanoTime() - getBatchStart;
/* 087 */   }
/* 088 */
/* 089 */   private void agg_doConsume_0() throws java.io.IOException {
/* 090 */     // do aggregate
/* 091 */     // common sub-expressions
/* 092 */
/* 093 */     // evaluate aggregate function
/* 094 */     long agg_value_1 = -1L;
/* 095 */     agg_value_1 = agg_bufValue_0 + 1L;
/* 096 */     // update aggregation buffer
/* 097 */     agg_bufIsNull_0 = false;
/* 098 */     agg_bufValue_0 = agg_value_1;
/* 099 */
/* 100 */   }
/* 101 */
/* 102 */   protected void processNext() throws java.io.IOException {
/* 103 */     while (!agg_initAgg_0) {
/* 104 */       agg_initAgg_0 = true;
/* 105 */       long agg_beforeAgg_0 = System.nanoTime();
/* 106 */       agg_doAggregateWithoutKey_0();
/* 107 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[4] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);
/* 108 */
/* 109 */       // output the result
/* 110 */
/* 111 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[3] /* numOutputRows */).add(1);
/* 112 */       scan_mutableStateArray_3[2].reset();
/* 113 */
/* 114 */       scan_mutableStateArray_3[2].zeroOutNullBytes();
/* 115 */
/* 116 */       scan_mutableStateArray_3[2].write(0, agg_bufValue_0);
/* 117 */       append((scan_mutableStateArray_3[2].getRow()));
/* 118 */     }
/* 119 */   }
/* 120 */
/* 121 */ }           

阿裡巴巴開源大資料技術團隊成立Apache Spark中國技術社群,定期推送精彩案例,技術專家直播,問答區數個Spark技術同學每日線上答疑,隻為營造純粹的Spark氛圍,歡迎釘釘掃碼加入!

Spark Codegen淺析背景介紹Case StudySpark Codegen架構