天天看點

HashMap(JDK1.8)源碼閱讀記錄HashMap資料結構構造方法重要函數END

版權聲明:本文為部落客原創文章,未經部落客允許不得轉載。 https://blog.csdn.net/weixin_40254498/article/details/81780244

HashMap

基于哈希表的 Map 接口的實作。此實作提供所有可選的映射操作,并允許使用 null 值和 null 鍵。(除了非同步和允許使用 null 之外,HashMap 類與 Hashtable 大緻相同。)此類不保證映射的順序,特别是它不保證該順序恒久不變。 此實作假定哈希函數将元素适當地分布在各桶之間,可為基本操作(get 和 put)提供穩定的性能。疊代 collection 視圖所需的時間與 HashMap 執行個體的“容量”(桶的數量)及其大小(鍵-值映射關系數)成比例。是以,如果疊代性能很重要,則不要将初始容量設定得太高(或将加載因子設定得太低)。

資料結構

先看下hashmap的資料結構

大概就是如圖所示。

table就是數組咯。連結清單的他們稱之為桶。大于門檻值就轉成紅黑樹咯,主要是為了提高效率。

使用紅黑樹來實作。

構造方法

/**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
           
其中最主要的是初始化的大小
還有初始化填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
HashMap的容量超過目前數組長度*加載因子,就會執行resize()算法
比如說向水桶中裝水,此時HashMap就是一個桶, 這個桶的容量就是加載容量, 
而加載因子就是你要控制向這個桶中倒的水不超過水桶容量的比例,比如加載因子是0.75 , 
那麼在裝水的時候這個桶最多能裝到3/4 處,超過這個比例時,桶會自動擴容。 
是以,這個桶最多能裝水 = 桶的容量 * 加載因子。
           
/**     
     * 擷取初始值,你輸入的初始值,不一定是初始化時所用的初始值。
     * 為什麼初始值必須是2得倍數呢,下面代碼會給你解釋。
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    MAXIMUM_CAPACITY = 1<<30;
           
這樣得到的始終是你輸入初始值 
小于最小的2的次幂,也就是說 
比如你輸入 
15 --->>16
29 --->>32
44 --->>64
           

重要函數

hash()

/**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int hash(Object key) {
        int h;
        // 這一頓操作大概的意思就是保留了高16位的值
        // 其實低16位得值也保留了下來,隻要在做一次異或,值就變回來了
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }           

public V put(K key, V value) {}

/**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // table未初始化或者長度為0,進行擴容
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 看下值放在哪一個table[] 
        // 這裡也有一個為什麼table的大小為什麼必須是2的倍數的原因
        // n 是 tab的長度  那麼 (n - 1) & hash 的意思就是?
        // 假如 長度為 16(10000) 那麼 15(01111) & 就得到最後hash值相當于 h & (length - 1) == h % length
        // 這樣數組也不會越界等 運算得比%運算得快 
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        // 已經有了,就看下是放在 連結清單還是紅黑樹。
        else {
            Node<K,V> e; K k;
            //先比較s是不是在頭節點
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //或者是紅黑樹
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //沒辦法了,隻能是連結清單了
            else {
                for (int binCount = 0; ; ++binCount) {
                    //直接放在尾部
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //連結清單大于8個門檻值直接轉成紅黑樹
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //存在一模一樣的key則跳出繼續
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    //繼續周遊
                    p = e;
                }
            }
            //如果找到了存放的位置
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                 // onlyIfAbsent為false或者舊值為null
                 // onlyIfAbsent是傳入的參數 預設w為false直接替換
                if (!onlyIfAbsent || oldValue == null)
                    //用新值替換舊值
                    e.value = value;
                afterNodeAccess(e);
                // 傳回舊值
                return oldValue;
            }
        }
        ++modCount;
        // 實際大小大于門檻值則擴容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }           

public V get(Object key) {}

相對于put,get就比較簡單了。
相對jdk1.7版本 
1.7 ---->1.8 
位桶+連結清單 ----> 位桶+連結清單大于門檻值(8)後切換成紅黑樹
大資料下 O(n)->>O(Logn)
           
/**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
         // table已經初始化,長度大于0,根據hash尋找table中的項也不為空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //判斷是不是第一個結點 是就傳回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 節點下面還有東西?
            if ((e = first.next) != null) {
                // 是紅黑樹嗎?
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //不是紅黑樹那你肯定是連結清單咯
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }           

resize()

hashmap的擴容方法

/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
         //儲存舊的
        Node<K,V>[] oldTab = table;
        //儲存長度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //儲存門檻值 需要resize的門檻值
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 之前table大小大于0
        if (oldCap > 0) {
            // 之前table大于最大容量
            if (oldCap >= MAXIMUM_CAPACITY) {
                 // 門檻值為最大整形
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 容量翻倍,使用左移,效率更高
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                // double threshold 門檻值翻倍
                newThr = oldThr << 1;        
        // 之前門檻值大于0
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        // oldCap = 0并且oldThr = 0,使用預設值(如使用HashMap()構造函數,之後再插入一個元素會調用resize函數,會進入這一步)
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 新門檻值為0
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 初始化table
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 之前的table已經初始化過
        if (oldTab != null) {
            // 複制元素,重新進行hash
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //如果連結清單隻有一個,則直接指派
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //紅黑樹啊
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //隻能是連結清單了  
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
           
這一頓操作之後大概就是這個過程吧
           

END

HashMap運用了許多非常巧妙的算法吧,大量的使用到了位運算,讓這個結構運作更穩定更巧妙。每次看都有新收獲。

繼續閱讀