标簽
PostgreSQL , range , jsonb , gist , btree_gist , 展開 , array
https://github.com/digoal/blog/blob/master/201807/20180703_02.md#%E8%83%8C%E6%99%AF 背景
電商,任意次元商品圈選應用,其中一個查詢請求是這樣的:
求 "某個國家、某個時間點、調價+折扣後的價格" 落在某個價格範圍的商品。
首先需要有的要素包括:
1、商品ID
2、不同國家的商品價格
3、商品原價
4、商品日常價
5、不同時間段的價格折扣
6、調價系數
https://github.com/digoal/blog/blob/master/201807/20180703_02.md#%E4%BE%8B%E5%AD%90 例子
1、表結構設計
create table t_item (
id int8 primary key, -- 商品ID
country jsonb, -- 每個國家的價格取值範圍
price jsonb, -- 每個時間段的折扣,(時間可能重疊,根據優先級LIMIT 1個折扣)
ratio float4 -- 調價比例
-- 其他屬性scalar類型, 使用rum或gin索引,本文末尾有案例
);
2、資料樣本
insert into t_item values (
1,
jsonb '{"global":{"min": 100, "max":200}, "china":{"min": 120, "max":260}, "us":{"min": 170, "max":300}}',
jsonb '{"100|[1514764800,1515542400)":0.4, "200|[1514764800,1515542400)":0.9, "0|[-62135596800,253402214400)":1}',
0.1
);
其中時間區間可以使用epoch表示
postgres=# select extract(epoch from date '2018-01-01');
date_part
------------
1514764800
(1 row)
postgres=# select extract(epoch from date '2018-01-10');
date_part
------------
1515542400
(1 row)
postgres=# select extract(epoch from date '0001-01-01');
date_part
--------------
-62135596800
(1 row)
postgres=# select extract(epoch from date '9999-12-31');
date_part
--------------
253402214400
(1 row)
3、由于不同時間段的折扣不一樣,并且優先級也不一樣,是以,使用一個函數來擷取某個時間點的這塊。
當輸入的時間點有多個時間區間包括它時,取優先級最高的那個折扣,并傳回,如果沒有任何比對的時間區間,則傳回1。
create or replace function get_discount(
jsonb, -- 每個時間段的折扣字段
int8 -- epoch 時間值
) returns float4 as $$
declare
res float4;
begin
-- select split_part(key,'|',1) as priority, split_part(key,'|',2) as ts, value from jsonb_each_text($1);
select value into res from jsonb_each_text($1) where split_part(key,'|',2)::int8range @> $2 order by split_part(key,'|',1)::numeric desc limit 1;
if found then
return res;
end if;
return 1;
end;
$$ language plpgsql strict parallel safe;
postgres=# select get_discount(jsonb '{"100|[1514764800,1515542400)":0.4, "200|[1514764800,1515542400)":0.9, "0|[-62135596800,253402214400)":1}', 100000);
get_discount
--------------
1
(1 row)
postgres=# select get_discount(jsonb '{"100|[1514764800,1515542400)":0.4, "200|[1514764800,1515542400)":0.9, "0|[-62135596800,253402214400)":1}', 1515542200);
get_discount
--------------
0.9
(1 row)
4、不同的國家,價格不一樣,輸入國家編碼,傳回對應國家的價格,如果輸入的編碼在JSONB中沒有,則傳回global的價格。
create or replace function get_price(
jsonb, -- 國家價格區間
text -- 國家編碼
) returns float8 as $$
select case when ($1->$2->>'max')::float8 is not null then ($1->$2->>'max')::float8 else ($1->'global'->>'max')::float8 end;
$$ language sql strict parallel safe;
postgres=# select get_price(jsonb '{"global":{"min": 100, "max":200}, "china":{"min": 120, "max":260}, "us":{"min": 170, "max":300}}', 'hello');
get_price
-----------
200
(1 row)
postgres=# select get_price(jsonb '{"global":{"min": 100, "max":200}, "china":{"min": 120, "max":260}, "us":{"min": 170, "max":300}}', 'china');
get_price
-----------
260
(1 row)
5、求 "某個國家、某個時間點、調價+折扣後的價格" 落在某個價格範圍的商品。
SQL
postgres=# select * from t_item where get_price(country, 'china') * get_discount(price, 1515542200) * (1+ratio) < 100;
id | country | price | ratio
----+---------+-------+-------
(0 rows)
postgres=# select * from t_item where get_price(country, 'china') * get_discount(price, 1515542200) * (1+ratio) < 1000;
id | country | price | ratio
----+---------------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------+-------
1 | {"us": {"max": 300, "min": 170}, "china": {"max": 260, "min": 120}, "global": {"max": 200, "min": 100}} | {"100|[1514764800,1515542400)": 0.4, "200|[1514764800,1515542400)": 0.9, "0|[-62135596800,253402214400)": 1} | 0.1
(1 row)
6、壓測
寫入5.3億資料
insert into t_item select * from t_item ;
.....
insert into t_item select * from t_item ;
單表約 186 GB
postgres=# \dt+ t_item
List of relations
Schema | Name | Type | Owner | Size | Description
--------+--------+-------+----------+--------+-------------
public | t_item | table | postgres | 186 GB |
(1 row)
7、使用并行計算
postgres=# alter function get_price ;
ALTER FUNCTION
postgres=# alter function get_discount parallel safe;
ALTER FUNCTION
postgres=# set max_parallel_workers_per_gather =56;
SET
postgres=# alter table t_item set (parallel_workers =56);
ALTER TABLE
postgres=# set min_parallel_table_scan_size =0;
SET
postgres=# set min_parallel_index_scan_size =0;
SET
postgres=# set parallel_setup_cost =0;
SET
postgres=# set parallel_tuple_cost =0;
SET
8、最差的情況,沒有一條命中的資料,耗時為處理完5.3億條記錄的耗時
postgres=# explain select * from t_item where get_price(country, 'china') * get_discount(price, 1515542200) * (1+ratio) < 100 ;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
Gather (cost=1000.00..51024073.42 rows=178956971 width=332)
Workers Planned: 32
-> Parallel Seq Scan on t_item (cost=0.00..33127376.32 rows=5592405 width=332)
Filter: (((get_price(country, 'china'::text) * get_discount(price, '1515542200'::bigint)) * ('1'::double precision + ratio)) < '100'::double precision)
(4 rows)
postgres=# explain analyze select * from t_item where get_price(country, 'china') * get_discount(price, 1515542200) * (1+ratio) < 100 ;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------------
Gather (cost=1000.00..47285151.00 rows=178956971 width=332) (actual time=444448.106..444448.106 rows=0 loops=1)
Workers Planned: 56
Workers Launched: 56
-> Parallel Seq Scan on t_item (cost=0.00..29388453.90 rows=3195660 width=332) (actual time=444292.055..444292.055 rows=0 loops=57)
Filter: (((get_price(country, 'china'::text) * get_discount(price, '1515542200'::bigint)) * ('1'::double precision + ratio)) < '100'::double precision)
Rows Removed by Filter: 9418788
Planning Time: 0.072 ms
Execution Time: 462253.627 ms
(8 rows)
56 core 虛拟機,耗時462秒。
https://github.com/digoal/blog/blob/master/201807/20180703_02.md#%E7%B4%A2%E5%BC%95%E4%BC%98%E5%8C%96 索引優化
将資料展開為兩張表(其中一張可以使用原始表,不需要建立)
其中表1的資料,需要業務方維護,當原價、折扣、調價系數發生變化時,需要實時的更新這裡的記錄。
https://github.com/digoal/blog/blob/master/201807/20180703_02.md#%E8%A1%A81 表1
折扣區間展開表:
商品ID
國家
時間區間
折後價
create table t_item1 (
id int8,
country text,
ts int8range,
price float8,
exclude using gist (id with =, country with =, ts with &&) -- 排他限制,同一個商品ID同一個國家不允許有TS相交的折扣資料
);
create extension IF NOT EXISTS btree_gist;
create index idx_t_item1_1 on t_item1 using gist (country,price,ts);
https://github.com/digoal/blog/blob/master/201807/20180703_02.md#%E8%A1%A82 表2
正常價格查原始表:
商品ID
國家
日常價
原價
調價比例
create table t_item2 (
id int8,
country text,
price1 float8,
price2 float8,
ratio float4,
primary key (country, id)
);
create index idx_t_item2_1 on t_item2 (country, (least(price1*ratio,price2*ratio)));
https://github.com/digoal/blog/blob/master/201807/20180703_02.md#sql
select id from t_item1 where country ='china' and price < 50::float8 and ts @> 10000000::int8
union
select id from t_item2 where country='china' and (least(price1*ratio,price2*ratio)) < 50;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
HashAggregate (cost=5.91..5.94 rows=3 width=8)
Group Key: t_item1.id
-> Append (cost=0.14..5.90 rows=3 width=8)
-> Index Scan using idx_t_item1_1 on t_item1 (cost=0.14..2.37 rows=1 width=8)
Index Cond: ((country = 'china'::text) AND (price < '50'::double precision) AND (ts @> '10000000'::bigint))
-> Index Scan using idx_t_item2_1 on t_item2 (cost=0.15..3.49 rows=2 width=8)
Index Cond: ((country = 'china'::text) AND (LEAST((price1 * ratio), (price2 * ratio)) < '50'::double precision))
(7 rows)
https://github.com/digoal/blog/blob/master/201807/20180703_02.md#%E5%B0%8F%E7%BB%93 小結
第一種設計,簡化了程式開發,但是無法使用索引掃描,性能會比較差。
第二種設計,當調價比例、原價、折扣資料發生變化時,程式需要維護價格的變更到t_item1表,程式開發上會增加一定的負擔,(當然也可以使用資料庫觸發器來更新,程式偷一下懶,但是不推薦這麼做)。