問題:
實作次方運算
Implement pow(x, n).
解法:
Consider the binary representation of n. For example, if it is "10001011", then x^n = x^(1+2+8+128) = x^1 * x^2 * x^8 * x^128. Thus, we don't want to loop n times to calculate x^n. To speed up, we loop through each bit, if the i-th bit is 1, then we add x^(1 << i) to the result. Since (1 << i) is a power of 2, x^(1<<(i+1)) = square(x^(1<<i)). The loop executes for a maximum of log(n) times.
n還大于0的時候,每次循環x都在平方。遇到位為1的時候,把x乘進去。
Java代碼:
public static double myPow(double x, int n) {
if (n == 0) {
return 1;
}
if (n < 0) {
if (n == Integer.MIN_VALUE) {
return 1.0 / (myPow(x, Integer.MAX_VALUE)*x);
} else {
return 1.0 / (myPow(x,-n));
}
}
double res = 1.0;
for (;n > 0;x *= x,n>>=1) {
if ((n & 1) > 0) {
res *= x;
}
}
return res;
}
public static double myPow(double x, int n) {
if (n == 0) {
return 1;
}
if (n < 0) {
if (n == Integer.MIN_VALUE) {
return 1.0 / (myPow(x, Integer.MAX_VALUE)*x);
} else {
return 1.0 / (myPow(x,-n));
}
}
double res = 1.0;
while (n > 0) {
if ((n & 1) > 0) {
res *= x;
}
x *= x;
n>>=1;
}
return res;
}