https://www.freecodecamp.org/learn/machine-learning-with-python/machine-learning-with-python-projects/book-recommendation-engine-using-knn
In this challenge, you will create a book recommendation algorithm using K-Nearest Neighbors. You will use the Book-Crossings dataset. This dataset contains 1.1 million ratings (scale of 1-10) of 270,000 books by 90,000 users. You can access the full project instructions and starter code on Google Colaboratory.
https://www.cnblogs.com/beyondChan/p/10861045.html
https://www.cnblogs.com/feily/p/14397470.html
Unsupervised learner for implementing neighbor searches. Read more in the User Guide.
https://datascienceplus.com/building-a-book-recommender-system-the-basics-knn-and-matrix-factorization/
使用 pivot 建立二維虛拟視圖。
https://zhuanlan.zhihu.com/p/29903232
https://github.com/BUVANEASH/Book-Recommendation---Collaborative-Filtering
https://github.com/jalajthanaki/Book_recommendation_system/blob/master/KNN_based_recommendation_system.ipynb
出處:http://www.cnblogs.com/lightsong/
本文版權歸作者和部落格園共有,歡迎轉載,但未經作者同意必須保留此段聲明,且在文章頁面明顯位置給出原文連接配接。