天天看點

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

本文就是介紹一些常見的排序算法。排序是一個非常常見的應用場景,很多時候,我們需要根據自己需要排序的資料類型,來自定義排序算法,但是,在這裡,我們隻介紹這些基礎排序算法,包括:插入排序、選擇排序、冒泡排序、快速排序(重點)、堆排序、歸并排序等等。看下圖:

給定數組:int data[] = {9,2,7,19,100,97,63,208,55,78}

一、直接插入排序(内部排序、O(n2)、穩定)

原理:從待排序的數中選出一個來,插入到前面的合适位置。

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

package com.xtfggef.algo.sort;  

public class InsertSort {  

    static int data[] = { 9, 2, 7, 19, 100, 97, 63, 208, 55, 78 };  

    public static void insertSort() {  

        int tmp, j = 0;  

        for (int k = 0; k < data.length; k++) {//-----1-----  

            tmp = data[k];  

            j = k - 1;  

            while (j >= 0 && tmp < data[j]) {//-----2-----  

                data[j + 1] = data[j];  

                j--;  

            }  

            data[j + 1] = tmp;//------3-------  

        }  

    }  

    public static void main(String[] args) {  

        print();  

        System.out.println();  

        insertSort();  

    static void print() {  

        for (int i = 0; i < data.length; i++) {  

            System.out.print(data[i] + " ");  

}  

我簡單的講解一下過程:思路上從待排序的資料中選出一個,插入到前面合适的位置,耗時點在插入方面,合适的位置意味着我們需要進行比較找出哪是合适的位置,舉個例子:對于9,2,7,19,100,97,63,208,55,78這組數,第一個數9前面沒有,不做操作,當第一個數完後,剩下的數就是待排序的數,我們将要從除去9開始的書中選出一個插入到前面合适的位置,拿到2後,放在tmp上,進行注釋中的2處的代碼,2處的代碼就是通過循環找出這個合适的位置,發現比tmp大的數,立即将該數向後移動一位(這樣做的目的是:前面需要空出一位來進行插入),最後通過注釋3處的代碼将數插入。

本排序适合:基本有序的資料

二、選擇排序(O(n2)、不穩定)

與直接插入排序正好相反,選擇排序是從待排序的數中選出最小的放在已經排好的後面,這個算法選數耗時。

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

public class SelectSort {  

    public static void selectSort() {  

        int i, j, k, tmp = 0;  

        for (i = 0; i < data.length - 1; i++) {  

            k = i;  

            for (j = i + 1; j < data.length; j++)  

                if (data[j] < data[k])  

                    k = j;  

            if (k != i) {  

                tmp = data[i];  

                data[i] = data[k];  

                data[k] = tmp;  

        selectSort();  

通過循環,找出最小的數的下标,指派于k,即k永遠保持待排序資料中最小的數的下标,最後和目前位置i互換資料即可。

三、快速排序(O(nlogn)、不穩定)

快速排序簡稱快排,是一種比較快的排序,适合基本無序的資料,為什麼這麼說呢?下面我說下快排的思路:

設定兩個指針:i和j,分别指向第一個和最後一個,i像後移動,j向前移動,選第一個數為标準(一般這樣做,當然快排的關鍵就是這個“标準”的選取),從後面開始,找到第一個比标準小的數,互換位置,然後再從前面,找到第一個比标準大的數,互換位置,第一趟的結果就是标準左邊的都小于标準,右邊的都大于标準(但不一定有序),分成兩撥後,繼續遞歸的使用上述方法,最終有序!代碼如下:

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

public class QuickSortTest {  

    static class QuickSort {  

        public int data[];  

        private int partition(int array[], int low, int high) {  

            int key = array[low];  

            while (low < high) {  

                while (low < high && array[high] >= key)  

                    high--;  

                array[low] = array[high];  

                while (low < high && array[low] <= key)  

                    low++;  

                array[high] = array[low];  

            array[low] = key;  

            return low;  

        public int[] sort(int low, int high) {  

            if (low < high) {  

                int result = partition(data, low, high);  

                sort(low, result - 1);  

                sort(result + 1, high);  

            return data;  

    static void print(int data[]) {  

        int data[] = { 20, 3, 10, 9, 186, 99, 200, 96, 3000 };  

        print(data);  

        QuickSort qs = new QuickSort();  

        qs.data = data;  

        qs.sort(0, data.length - 1);  

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

看看上面的圖,基本就明白了。

四、冒泡排序(穩定、基本有序可達O(n),最壞情況為O(n2))

冒泡排序是一種很簡單,不論是了解還是時間起來都比較容易的一種排序算法,思路簡單:小的數一點一點向前起泡,最終有序。

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

public class BubbleSort {  

    public static void bubbleSort() {  

        int i, j, tmp = 0;  

            for (j = data.length - 1; j > i; j--) {  

                if (data[j] < data[j - 1]) {  

                    tmp = data[j];  

                    data[j] = data[j - 1];  

                    data[j - 1] = tmp;  

                }  

        bubbleSort();  

五、堆排序

我們這裡不詳細介紹概念,堆的話,大家隻要記得堆是一個完全二叉樹(什麼是完全二叉樹,請不懂的讀者去查資料),堆排序分為兩種堆,大頂堆和小頂堆,大頂堆的意思就是堆頂元素是整個堆中最大的,小頂堆的意思就是堆頂元素是整個堆中最小的,滿足:任何一非葉節點的關鍵字不大于或者不小于其左右孩子節點的關鍵字。堆排序是一個相對難了解的過程,下面我會較為清楚、詳細的講解一下堆排序。堆排序分為三個過程:

建堆:從一個數組順序讀取元素,建立一個堆(完全二叉樹)

初始化:将堆進行調整,使得堆頂為最大(最大堆)或者最小(最小堆)的元素

維護:将堆頂元素出堆後,需要将堆的最後一個節點補充到堆頂,因為這樣破壞了堆的秩序,是以需要進行維護。下面我們圖示一下:

一般情況,建堆和初始化同步進行,

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等
Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

最後為如下所示,即為建堆、初始化成功。

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

我們可以觀察下這個最大堆,看出堆頂是整個堆中最大的元素,而且除葉子節點外每個節點都大于其子節點。下面的過程就是當我們輸出堆頂元素後,對堆進行維護。

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

過程是這樣:将堆頂元素出堆後,用最後一個元素補充堆頂元素,這樣破壞了之前的秩序,需要重新維護堆,在堆頂元素的左右節點中選出較小的和堆頂互換,然後一直遞歸下去,是以每次出一個元素,需要一次維護,堆排序适合解決topK問題,能将複雜度降到nlogK。下面是代碼:

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

public class HeapSort {  

    private static int[] sort = new int[] { 1, 0, 10, 20, 3, 5, 6, 4, 9, 8, 12,  

            17, 34, 11 };  

        buildMaxHeapify(sort);  

        heapSort(sort);  

        print(sort);  

    private static void buildMaxHeapify(int[] data) {  

        // 沒有子節點的才需要建立最大堆,從最後一個的父節點開始  

        int startIndex = getParentIndex(data.length - 1);  

        // 從尾端開始建立最大堆,每次都是正确的堆  

        for (int i = startIndex; i >= 0; i--) {  

            maxHeapify(data, data.length, i);  

    /** 

     * 建立最大堆 

     *  

     * @param data 

     * @param heapSize 

     *            需要建立最大堆的大小,一般在sort的時候用到,因為最多值放在末尾,末尾就不再歸入最大堆了 

     * @param index 

     *            目前需要建立最大堆的位置 

     */  

    private static void maxHeapify(int[] data, int heapSize, int index) {  

        // 目前點與左右子節點比較  

        int left = getChildLeftIndex(index);  

        int right = getChildRightIndex(index);  

        int largest = index;  

        if (left < heapSize && data[index] < data[left]) {  

            largest = left;  

        if (right < heapSize && data[largest] < data[right]) {  

            largest = right;  

        // 得到最大值後可能需要交換,如果交換了,其子節點可能就不是最大堆了,需要重新調整  

        if (largest != index) {  

            int temp = data[index];  

            data[index] = data[largest];  

            data[largest] = temp;  

            maxHeapify(data, heapSize, largest);  

     * 排序,最大值放在末尾,data雖然是最大堆,在排序後就成了遞增的 

    private static void heapSort(int[] data) {  

        // 末尾與頭交換,交換後調整最大堆  

        for (int i = data.length - 1; i > 0; i--) {  

            int temp = data[0];  

            data[0] = data[i];  

            data[i] = temp;  

            maxHeapify(data, i, 0);  

     * 父節點位置 

     * @param current 

     * @return 

    private static int getParentIndex(int current) {  

        return (current - 1) >> 1;  

     * 左子節點position 注意括号,加法優先級更高 

    private static int getChildLeftIndex(int current) {  

        return (current << 1) + 1;  

     * 右子節點position 

    private static int getChildRightIndex(int current) {  

        return (current << 1) + 2;  

    private static void print(int[] data) {  

        int pre = -2;  

            if (pre < (int) getLog(i + 1)) {  

                pre = (int) getLog(i + 1);  

                System.out.println();  

            System.out.print(data[i] + " |");  

     * 以2為底的對數 

     * @param param 

    private static double getLog(double param) {  

        return Math.log(param) / Math.log(2);  

慢慢了解一下,還是容易明白的!

六、歸并排序

歸并排序是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。

首先考慮下如何将将二個有序數列合并。這個非常簡單,隻要從比較二個數列的第一個數,誰小就先取誰,取了後就在對應數列中删除這個數。然後再進行比較,如果有數列為空,那直接将另一個數列的資料依次取出即可。

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

public class SortTest {  

    // 将有序數組a[]和b[]合并到c[]中  

    static void MemeryArray(int a[], int n, int b[], int m, int c[]) {  

        int i, j, k;  

        i = j = k = 0;  

        while (i < n && j < m) {  

            if (a[i] < b[j])  

                c[k++] = a[i++];  

            else  

                c[k++] = b[j++];  

        while (i < n)  

            c[k++] = a[i++];  

        while (j < m)  

            c[k++] = b[j++];  

        int a[] = { 2, 7, 8, 10, 299 };  

        int b[] = { 5, 9, 14, 20, 66, 88, 92 };  

        int c[] = new int[a.length + b.length];  

        MemeryArray(a, 5, b, 7, c);  

        print(c);  

    private static void print(int[] c) {  

        for (int i = 0; i < c.length; i++) {  

            System.out.print(c[i] + " ");  

可以看出合并有序數列的效率是比較高的,可以達到O(n)。解決了上面的合并有序數列問題,再來看歸并排序,其的基本思路就是将數組分成二組A,B,如果這二組組内的資料都是有序的,那麼就可以很友善的将這二組資料進行排序。如何讓這二組組内資料有序了?可以将A,B組各自再分成二組。依次類推,當分出來的小組隻有一個資料時,可以認為這個小組組内已經達到了有序,然後再合并相鄰的二個小組就可以了。這樣通過先遞歸的分解數列,再合并數列就完成了歸并排序。下面是歸并排序代碼:

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

public class MergeSort {  

    private static void mergeSort(int[] data, int start, int end) {  

        if (end > start) {  

            int pos = (start + end) / 2;  

            mergeSort(data, start, pos);  

            mergeSort(data, pos + 1, end);  

            merge(data, start, pos, end);  

    private static void merge(int[] data, int start, int pos, int end) {  

        int len1 = pos - start + 1;  

        int len2 = end - pos;  

        int A[] = new int[len1 + 1];  

        int B[] = new int[len2 + 1];  

        for (int i = 0; i < len1; i++) {  

            A[i] = data[i + start - 1];  

        A[len1] = Integer.MAX_VALUE;  

        for (int i = 0; i < len2; i++) {  

            B[i] = data[i + pos];  

        B[len2] = Integer.MAX_VALUE;  

        int m = 0, n = 0;  

        for (int i = start - 1; i < end; i++) {  

            if (A[m] > B[n]) {  

                data[i] = B[n];  

                n++;  

            } else {  

                data[i] = A[m];  

                m++;  

    public static void main(String args[]) {  

        int data[] = { 8, 16, 99, 732, 10, 1, 29, 66 };  

        mergeSort(data, 1, data.length);  

七、希爾排序(不穩定、O(nlogn))

d1 = n/2,d2 = d1/2 ...

舉例一下:{9,8,7,6,5,4,3,2,1,0} 10個數,現分為5組(9,4),(8,3),(7,2),(6,1),(5,0),然後分别對每組進行直接插入排序得到:

(4,9),(3,8),(2,7),(1,6),(0,5),再将這5組分為2組(4,3,2,1,0),(9,8,7,6,5)分别對這兩組進行直插排序,得:(0,1,2,3,4),(5,6,7,8,9)最終有序。

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

public class ShellSort {  

    static void shellsort(int[] a, int n) {  

        int i, j, temp;  

        int gap = 0;  

        while (gap <= n) {  

            gap = gap * 3 + 1;  

        while (gap > 0) {  

            for (i = gap; i < n; i++) {  

                j = i - gap;  

                temp = a[i];  

                while ((j >= 0) && (a[j] > temp)) {  

                    a[j + gap] = a[j];  

                    j = j - gap;  

                a[j + gap] = temp;  

            gap = (gap - 1) / 3;  

        int data[] = { 2, 68, 7, 19, 1, 28, 66, 200 };  

        shellsort(data, data.length);  

八、多路快排

JDK1.8中Arrays.sort()采用的排序算法,具有較快的時間複雜度和穩定性,基本思路為:

1. 選取兩個中軸P1, P2。

2. 假設P1<P2,否則交換。

3. 過程中原數組會分為四個部分:小于中軸1,大于中軸2,介于兩個中軸之間,未排序部分(剛開始除了兩個中軸,其它元素都屬于這部分)。

4. 開始後,從未排序部分選取一個數,和兩個中軸作比較,然後放到合适的位置,一直到未排序部分無資料,結束一趟排序。

5. 遞歸地處理子數組,穩定排序,時間複雜度穩定為O(nlogn)。

九、其他排序

==============================================

計數排序

當輸入的元素是 n 個 0 到 k 之間的整數時,它的運作時間是 O(n + k)。計數排序不是比較排序,排序的速度快于任何比較排序算法。

由于用來計數的數組C的長度取決于待排序數組中資料的範圍(等于待排序數組的最大值與最小值的差加上1),這使得計數排序對于資料範圍很大的數組,需要大量時間和記憶體。例如:計數排序是用來排序0到100之間的數字的最好的算法,但是它不适合按字母順序排序人名。但是,計數排序可以用在基數排序中的算法來排序資料範圍很大的數組。

算法的步驟如下:

找出待排序的數組中最大和最小的元素

統計數組中每個值為i的元素出現的次數,存入數組C的第i項

對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加)

反向填充目标數組:将每個元素i放在新數組的第C(i)項,每放一個元素就将C(i)減去1

貼上代碼:

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

#include <stdio.h>  

#include <stdlib.h>  

#include <time.h>  

//對于排序的關鍵字範圍,一定是0-99  

#define NUM_RANGE (100)  

void print_arr(int *arr, int n)  

{  

       int i;  

       for(i=0; i<n; i++){  

               if(!i){  

                       printf("%d", arr[i]);  

               }else{  

                       printf(" %d", arr[i]);  

               }  

       }  

       printf("\n");  

/* 

算法的步驟如下: 

    1.找出待排序的數組中最大和最小的元素 

    2.統計數組中每個值為i的元素出現的次數,存入數組C的第i項 

    3.對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加) 

    4.反向填充目标數組:将每個元素i放在新數組的第C(i)項,每放一個元素就将C(i)減去1 

*/  

void counting_sort(int *ini_arr, int *sorted_arr, int n)  

       int *count_arr = (int *)malloc(sizeof(int) * NUM_RANGE);  

       int i, j, k;  

       //統計數組中,每個元素出現的次數  

       for(k=0; k<NUM_RANGE; k++){  

               count_arr[k] = 0;  

               count_arr[ini_arr[i]]++;  

       for(k=1; k<NUM_RANGE; k++){  

               count_arr[k] += count_arr[k-1];  

       for(j=n-1 ; j>=0; j--){  

           int elem = ini_arr[j];  

           int index = count_arr[elem]-1;  

           sorted_arr[index] = elem;  

           count_arr[elem]--;  

       free(count_arr);  

int main(int argc, char* argv[])  

       int n;  

       if(argc < 2){  

               n = 10;  

       }else{  

               n = atoi(argv[1]);  

       int *arr = (int *)malloc(sizeof(int) * n);  

       int *sorted_arr = (int *)malloc(sizeof(int) *n);  

       srand(time(0));  

               arr[i] = rand() % NUM_RANGE;  

       printf("ini_array: ");  

       print_arr(arr, n);  

       counting_sort(arr, sorted_arr, n);  

       printf("sorted_array: ");  

       print_arr(sorted_arr, n);  

       free(arr);  

       free(sorted_arr);  

       return 0;  

桶排序

桶排序的基本思想

假設有一組長度為N的待排關鍵字序列K[1....n]。首先将這個序列劃分成M個的子區間(桶) 。然後基于某種映射函數 ,将待排序列的關鍵字k映射到第i個桶中(即桶數組B的下标 i) ,那麼該關鍵字k就作為B[i]中的元素(每個桶B[i]都是一組大小為N/M的序列)。接着對每個桶B[i]中的所有元素進行比較排序(可以使用快排)。然後依次枚舉輸出B[0]....B[M]中的全部内容即是一個有序序列。假如待排序列K= {49、 38 、 35、 97 、 76、 73 、 27、 49 }。這些資料全部在1—100之間。是以我們定制10個桶,然後确定映射函數f(k)=k/10。則第一個關鍵字49将定位到第4個桶中(49/10=4)。依次将所有關鍵字全部堆入桶中,并在每個非空的桶中進行快速排序。

桶排序代價分析

桶排序利用函數的映射關系,減少了幾乎所有的比較工作。實際上,桶排序的f(k)值的計算,其作用就相當于快排中劃分,已經把大量資料分割成了基本有序的資料塊(桶)。然後隻需要對桶中的少量資料做先進的比較排序即可。

對N個關鍵字進行桶排序的時間複雜度分為兩個部分:

(1) 循環計算每個關鍵字的桶映射函數,這個時間複雜度是O(N)。

(2) 利用先進的比較排序算法對每個桶内的所有資料進行排序,其時間複雜度為 ∑ O(Ni*logNi) 。其中Ni 為第i個桶的資料量。

很顯然,第(2)部分是桶排序性能好壞的決定因素。盡量減少桶内資料的數量是提高效率的唯一辦法(因為基于比較排序的最好平均時間複雜度隻能達到O(N*logN)了)。是以,我們需要盡量做到下面兩點:

(1) 映射函數f(k)能夠将N個資料平均的配置設定到M個桶中,這樣每個桶就有[N/M]個資料量。

(2) 盡量的增大桶的數量。極限情況下每個桶隻能得到一個資料,這樣就完全避開了桶内資料的“比較”排序操作。 當然,做到這一點很不容易,資料量巨大的情況下,f(k)函數會使得桶集合的數量巨大,空間浪費嚴重。這就是一個時間代價和空間代價的權衡問題了。

對于N個待排資料,M個桶,平均每個桶[N/M]個資料的桶排序平均時間複雜度為:

O(N)+O(M*(N/M)*log(N/M))=O(N+N*(logN-logM))=O(N+N*logN-N*logM)

當N=M時,即極限情況下每個桶隻有一個資料時。桶排序的最好效率能夠達到O(N)。

總結: 桶排序的平均時間複雜度為線性的O(N+C),其中C=N*(logN-logM)。如果相對于同樣的N,桶數量M越大,其效率越高,最好的時間複雜度達到O(N)。 當然桶排序的空間複雜度 為O(N+M),如果輸入資料非常龐大,而桶的數量也非常多,則空間代價無疑是昂貴的。此外,桶排序是穩定的。

我個人還有一個感受:在查找算法中,基于比較的查找算法最好的時間複雜度也是O(logN)。比如折半查找、平衡二叉樹、紅黑樹等。但是Hash表卻有O(C)線性級别的查找效率(不沖突情況下查找效率達到O(1))。大家好好體會一下:Hash表的思想和桶排序是不是有一曲同工之妙呢?

基數排序

上面的問題是多關鍵字的排序,但單關鍵字也仍然可以使用這種方式。

比如字元串“abcd” “aesc” "dwsc" "rews"就可以把每個字元看成一個關鍵字。另外還有整數 425、321、235、432也可以每個位上的數字為一個關鍵字。

基數排序的思想就是将待排資料中的每組關鍵字依次進行桶配置設定。比如下面的待排序列:

278、109、063、930、589、184、505、269、008、083

我們将每個數值的個位,十位,百位分成三個關鍵字: 278 -> k1(個位)=8 ,k2(十位)=7 ,k3=(百位)=2。

然後從最低位個位開始(從最次關鍵字開始),對所有資料的k1關鍵字進行桶配置設定(因為,每個數字都是 0-9的,是以桶大小為10),再依次輸出桶中的資料得到下面的序列。

930、063、083、184、505、278、008、109、589、269

再對上面的序列接着進行針對k2的桶配置設定,輸出序列為:

505、008、109、930、063、269、278、083、184、589

最後針對k3的桶配置設定,輸出序列為:

008、063、083、109、184、269、278、505、589、930

性能分析

很明顯,基數排序的性能比桶排序要略差。每一次關鍵字的桶配置設定都需要O(N)的時間複雜度,而且配置設定之後得到新的關鍵字序列又需要O(N)的時間複雜度。假如待排資料可以分為d個關鍵字,則基數排序的時間複雜度将是O(d*2N) ,當然d要遠遠小于N,是以基本上還是線性級别的。基數排序的空間複雜度為O(N+M),其中M為桶的數量。一般來說N>>M,是以額外空間需要大概N個左右。

但是,對比桶排序,基數排序每次需要的桶的數量并不多。而且基數排序幾乎不需要任何“比較”操作,而桶排序在桶相對較少的情況下,桶内多個資料必須進行基于比較操作的排序。是以,在實際應用中,基數排序的應用範圍更加廣泛。

=============================================

Java常見的幾種排序算法-插入、選擇、冒泡、快排、堆排等

文章最後,給大家推薦一個資料結構學習的網站,有flash示範的:http://www.tyut.edu.cn/kecheng1/site01/index.asp

若轉載請注明出處!若有疑問,請回複交流!