綁定變量在OLTP環境下,被廣泛的使用;這源于OLTP的特點和sql語句的執行過程,OLTP典型的事務短,類似的sql語句執行率高,并發大;oracle在執行sql語句前會對sql語句進行hash運算,将得到的hash值和share pool中的library cache中對比,如果未命中,則這條sql語句需要執行硬解析,如果命中,則隻需要進行軟解析;硬解析的執行過程是先進行語義,文法分析,然後生成執行計劃,最後執行sql語句,在OLTP系統中使用綁定變量可以很好的解決這個問題!
一:oltp環境下,使用綁定變量和不使用綁定變量對比
1:建立測試資料
[oracle@dg53 ~]$ sqlplus hr/hr
SQL*Plus: Release 10.2.0.1.0 - Production on Thu Jun 14 16:54:46 2012
Copyright (c) 1982, 2005, Oracle. All rights reserved.
Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining options
SQL> create table t1 as select object_id,object_name from dba_objects;
Table created.
SQL> create index i_t1 on t1(object_id);
Index created.
SQL> exec dbms_stats.gather_table_stats('HR','T1',CASCADE=>TRUE);
PL/SQL procedure successfully completed.
2:不使用綁定變量情況下,進行sql trace分析,執行1萬次,需要硬解析10003次,其中包含遞歸解析,解析時間為19.37s,cpu消耗為17.62
SQL> alter session set tracefile_identifier='HR01';
Session altered.
SQL> alter session set sql_trace=TRUE;
SQL> begin
2 for i in 1..10000
3 loop
4 execute immediate 'select * from t1 where object_id='||i;
5 end loop;
6* end;
PL/SQL procedure successfully completed.
SQL> alter session set sql_trace=FALSE;
OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 10003 17.62 19.37 0 0 0 0
Execute 10003 0.48 0.54 0 0 0 0
Fetch 7 0.00 0.01 1 13 0 4
total 20013 18.10 19.92 1 13 0 4
Misses in library cache during parse: 10000
10003 user SQL statements in session.
3 internal SQL statements in session.
10006 SQL statements in session.
0 statements EXPLAINed in this session.
********************************************************************************
Trace file: dg53_ora_24818_HR01.trc
Trace file compatibility: 10.01.00
Sort options: default
0 session in tracefile.
10003 user SQL statements in trace file.
3 internal SQL statements in trace file.
10006 SQL statements in trace file.
10006 unique SQL statements in trace file.
80071 lines in trace file.
78 elapsed seconds in trace file.
3:使用綁定變量情況下,進行sql trace分析,執行1萬次,隻需要硬解析5次,其中包含遞歸解析,解析時間和cpu時間基本忽略不計
SQL> alter session set tracefile_identifier='HR02';
4 execute immediate 'select * from t1 where object_id=:i' using i;
6 end;
Parse 5 0.00 0.00 0 0 0 0
Execute 10004 0.10 0.09 0 0 0 0
Fetch 10 0.00 0.01 0 29 0 7
total 10019 0.10 0.10 0 29 0 7
Misses in library cache during parse: 2
Misses in library cache during execute: 1
4 user SQL statements in session.
4 internal SQL statements in session.
8 SQL statements in session.
Trace file: dg53_ora_24818_HR02.trc
4 user SQL statements in trace file.
4 internal SQL statements in trace file.
8 SQL statements in trace file.
8 unique SQL statements in trace file.
10078 lines in trace file.
91 elapsed seconds in trace file.
二:使用綁定變量有如此好的效果,那麼這是不是百利無一害的技術手段呢?下面在OLAP環境下測試
1:建立測試資料,olap環境下分區的技術非常普遍,且資料量非常大
[root@dg53 ~]# su - oracle
[oracle@dg53 ~]$ sqlplus /nolog
SQL*Plus: Release 10.2.0.1.0 - Production on Fri Jun 15 09:05:35 2012
SQL> conn /as sysdba
Connected.
SQL> create tablespace data01;
Tablespace created.
SQL> create tablespace data02;
SQL> create tablespace data03;
SQL> create tablespace data04;
SQL> conn hr/hr
SQL> create table t2 (object_id number,object_name varchar2(200))
2 partition by range(object_id)
3 (partition p1 values less than(5000) tablespace data01,
4 partition p2 values less than(10000) tablespace data02,
5 partition p3 values less than(15000) tablespace data03,
6* partition pm values less than(maxvalue) tablespace data04)
2 for i in 1..300
4 insert into t2 select object_id,object_name from dba_objects;
SQL> commit;
Commit complete.
SQL> create index i_t_id on t2(object_id) local
2 (partition p1 tablespace data01,
3 partition p2 tablespace data02,
4 partition p3 tablespace data03,
5 partition pm tablespace data04);
SQL> exec dbms_stats.gather_table_stats('HR','T2',CASCADE=>TRUE);
SQL> select count(*) from t2 partition(p1);
COUNT(*)
----------
1474800
SQL> select count(*) from t2 partition(p2);
1398900
SQL> select count(*) from t2 partition(p3);
1491900
SQL> select count(*) from t2 partition(pm);
10752600
2:查詢object_id落在1-5999之間的資料,檢視執行計劃,這裡選擇了全表掃描為最優的執行計劃
SQL> set autot traceonly
SQL> select object_id,count(*) from t2 where object_id between 1 and 5999 group by object_id;
5807 rows selected.
Execution Plan
----------------------------------------------------------
Plan hash value: 1765100474
-------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time| Pstart| Pstop |
| 0 | SELECT STATEMENT | | 5484 | 27420 | 2650 (12)| 00:00:32| | |
| 1 | PARTITION RANGE ITERATOR| | 5484 | 27420 | 2650 (12)| 00:00:32| 1 | 2 |
| 2 | HASH GROUP BY | | 5484 | 27420 | 2650 (12)| 00:00:32| | |
|* 3 | TABLE ACCESS FULL | T2 | 1639K| 8005K| 2432 (4)| 00:00:30| 1 | 2 |
Predicate Information (identified by operation id):
---------------------------------------------------
3 - filter("OBJECT_ID"<=5999 AND "OBJECT_ID">=1)
Statistics
1 recursive calls
0 db block gets
10772 consistent gets
10643 physical reads
0 redo size
101752 bytes sent via SQL*Net to client
4642 bytes received via SQL*Net from client
389 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
5807 rows processed
3:查詢object_id落在1000-15000之間的資料,檢視執行計劃,這裡選擇了索引通路掃描為最優的執行計劃
SQL> select object_id,count(*) from t2 where object_id between 1000 and 15000 group by object_id;
13600 rows selected.
Plan hash value: 3236792548
------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |Pstart| Pstop |
| 0 | SELECT STATEMENT | | 12869 | 64345 | 8731 (2)| 00:01:45 || |
| 1 | PARTITION RANGE ALL | | 12869 | 64345 | 8731 (2)| 00:01:45 |1 | 4 |
| 2 | SORT GROUP BY NOSORT| | 12869 | 64345 | 8731 (2)| 00:01:45 || |
|* 3 | INDEX RANGE SCAN | I_T_ID | 3847K| 18M| 8731 (2)| 00:01:45 |1 | 4 |
3 - access("OBJECT_ID">=1000 AND "OBJECT_ID"<=15000)
filter("OBJECT_ID"<=15000 AND "OBJECT_ID">=1000)
9655 consistent gets
8115 physical reads
242794 bytes sent via SQL*Net to client
10351 bytes received via SQL*Net from client
908 SQL*Net roundtrips to/from client
13600 rows processed
結論:由此可見,使用綁定變量應該盡量保證使用綁定變量的sql語句執行計劃應當相同,否則将造成問題,因而綁定變量不适用于OLAP環境中!
三:在前面的測試中,1-5999之間的查詢,為什麼不選擇分區範圍掃描?1000-5000之間的查詢,為什麼不選擇全表掃描,使用索引,不會産生無謂的2次I/O嗎?要了解這些,就要開啟資料庫的10053時間,分析cbo如何選擇執行計劃?
1:分析1-5999之間查詢的10053事件
SQL> alter session set tracefile_identifier='HR03';
SQL> alter session set events '10053 trace name context forever,level 1';
SQL> alter session set events '10053 trace name context off';
Session altered.
trace檔案關鍵内容:
***************************************
Column Usage Monitoring is ON: tracking level = 1
****************
QUERY BLOCK TEXT
select object_id,count(*) from t2 where object_id between 1 and 5999 group by object_id
*********************
QUERY BLOCK SIGNATURE
qb name was generated
signature (optimizer): qb_name=SEL$1 nbfros=1 flg=0
fro(0): flg=0 objn=54910 hint_alias="T2"@"SEL$1"
*****************************
SYSTEM STATISTICS INFORMATION
Using NOWORKLOAD Stats
CPUSPEED: 587 millions instruction/sec
IOTFRSPEED: 4096 bytes per millisecond (default is 4096)
IOSEEKTIM: 10 milliseconds (default is 10)
BASE STATISTICAL INFORMATION
***********************
Table Stats::
Table: T2 Alias: T2 (Using composite stats)
(making adjustments for partition skews)
ORIGINAL VALUES:: #Rows: 15078669 #Blks: 71051 AvgRowLen: 28.00
PARTITIONS::
PRUNED: 2
ANALYZED: 2 UNANALYZED: 0
#Rows: 15078669 #Blks: 10756 AvgRowLen: 28.00
Index Stats::
Index: I_T_ID Col#: 1
USING COMPOSITE STATS
LVLS: 2 #LB: 33742 #DK: 50440 LB/K: 1.00 DB/K: 303.00 CLUF: 15299802.00
Column (#1): OBJECT_ID(NUMBER)
AvgLen: 5.00 NDV: 50440 Nulls: 0 Density: 1.9826e-05 Min: 33 Max: 54914
SINGLE TABLE ACCESS PATH
Table: T2 Alias: T2
Card: Original: 15078669 Rounded: 1639470 Computed: 1639469.86 Non Adjusted: 1639469.86
Access Path: TableScan
Cost: 2432.43 Resp: 2432.43 Degree: 0
Cost_io: 2355.00 Cost_cpu: 545542277
Resp_io: 2355.00 Resp_cpu: 545542277
Access Path: index (index (FFS))
Index: I_T_ID
resc_io: 7383.00 resc_cpu: 2924443977
ix_sel: 0.0000e+00 ix_sel_with_filters: 1
Access Path: index (FFS)
Cost: 7798.09 Resp: 7798.09 Degree: 1
Cost_io: 7383.00 Cost_cpu: 2924443977
Resp_io: 7383.00 Resp_cpu: 2924443977
Access Path: index (IndexOnly)
resc_io: 3671.00 resc_cpu: 358846806
ix_sel: 0.10873 ix_sel_with_filters: 0.10873
Cost: 3721.93 Resp: 3721.93 Degree: 1
Best:: AccessPath: TableScan
Cost: 2432.43 Degree: 1 Resp: 2432.43 Card: 1639469.86 Bytes: 0
Grouping column cardinality [ OBJECT_ID] 5484
2:分析1000-5000之間查詢的10053事件
SQL> alter session set tracefile_identifier='HR04';
***************************************
select object_id,count(*) from t2 where object_id between 1000 and 15000 group by object_id
#Rows: 15078669 #Blks: 71051 AvgRowLen: 28.00
Card: Original: 15078669 Rounded: 3847127 Computed: 3847127.03 Non Adjusted: 3847127.03
Cost: 16073.05 Resp: 16073.05 Degree: 0
Cost_io: 15544.00 Cost_cpu: 3727344901
Resp_io: 15544.00 Resp_cpu: 3727344901
resc_io: 7383.00 resc_cpu: 3049910030
Cost: 7815.89 Resp: 7815.89 Degree: 1
Cost_io: 7383.00 Cost_cpu: 3049910030
Resp_io: 7383.00 Resp_cpu: 3049910030
resc_io: 8611.00 resc_cpu: 842035120
ix_sel: 0.25514 ix_sel_with_filters: 0.25514
Cost: 8730.52 Resp: 8730.52 Degree: 1
Best:: AccessPath: IndexFFS Index: I_T_ID
Cost: 7815.89 Degree: 1 Resp: 7815.89 Card: 3847127.03 Bytes: 0
Grouping column cardinality [ OBJECT_ID] 12869
本文以《讓oracle跑的更快》為指導,如有雷同,不勝榮幸!
本文轉自斬月部落格51CTO部落格,原文連結http://blog.51cto.com/ylw6006/899353如需轉載請自行聯系原作者
ylw6006