天天看点

Apache Spark机器学习.2.2 数据清洗

<b>2.2 数据清洗</b>

<b></b>

在本节中,我们将回顾一些spark平台上的数据清洗方法,重点关注数据不完备性。然后,我们将讨论一些spark数据清洗方面的特殊特征,以及一些基于spark平台更加容易的数据清洗解决方案。

学习完本节,我们将能够完成数据清洗,并为机器学习准备好数据集。

2.2.1 处理数据不完备性

对于机器学习,数据越多越好。然而,通常数据越多,“脏数据”也会越多——这意味着会有更多的数据清洗工作。

数据质量控制可能会有许多问题需要处理,有些问题可能很简单,如数据输入错误或者数据复制。原则上,解决他们的方法是类似的——例如,利用数据逻辑来实现探索和获取项目的本质知识,利用分析逻辑来纠正他们。为此,在本节中,我们将重点关注缺失值处理,以便说明在这个主题上spark的使用方法。数据清洗涵盖了数据的准确性、完整性、独特性、时效性和一致性。

虽然听起来可能很简单,但是处理缺失值和不完备性并不是一件容易的事情。它涉及许多问题,往往需要以下步骤:

1.计算数据缺失百分比。

这取决于研究项目,有些项目中的比例如果低于5%或10%,我们可能不需要在数据缺失问题上花费时间。

2.学习数据缺失的模式。

数据缺失有两种模式:完全随机或不随机。如果数据缺失是完全随机的,我们可以忽略这个问题。

3.确定解决数据缺失模式的方法。

处理数据缺失有几种常用的方法。均值填充,缺失数据删除,数据替换是最为主要的方法。

4.为数据缺失模式执行数据填补。

为了处理数据缺失和不完整性,数据科学家和机器学习从业者通常会利用他们熟悉的sql工具或r语言编程。幸运的是,在spark环境中,有spark sql和r notebook可以让用户继续使用他们熟悉的方法,为此,我们将在下面两节中进行详细阐述。

数据清洗也包含其他的问题,诸如处理数据输入错误和异常值。

2.2.2 在spark中进行数据清洗

在上一节中,我们讨论了处理数据不完备性。

安装spark后,我们可以很容易地在databricks workspace中使用spark sql和r notebook处理上一节中所描述的数据清洗工作。

特别需要指出的是,sqlcontext中的sql函数使得应用程序能够完成sql查询编程,并返回一个dataframe类型的结果。

例如,借助r notebook,我们可以用下面的语句来执行sql命令,并把结果放到一个data.frame:

数据清洗是一个非常繁琐和耗时的工作,在本节,我们想请你关注sampleclean,对于机器学习从业者,它可以使数据清洗更为简单,特别是分布式数据清洗。

sampleclean是建立在amplab伯克利数据分析栈(bdas)上的一个可扩展的数据清洗库。该库使用apache spark sql 1.2.0及以上版本和apache hive来支持分布式数据清洗操作和相关的脏数据查询处理。 sampleclean可以执行一组可互换和可组合的、物理和逻辑的数据清洗操作,这使得我们可以快速地构建和调整数据清洗pipelines。

我们先在spark和sampleclean中输入以下命令开启工作:

使用sampleclean,我们需要创建一个名为samplecleancontext的对象,然后使用该上下文来管理工作会话中所有的信息,并提供api基元与数据进行交互。 samplecleancontext由sparkcontext对象构造而成,具体如下:

2.2.3 更简便的数据清洗

使用sampleclean和spark,我们可以把数据清洗工作变得容易,可以编写更少的代码,并利用更少的数据。

总体而言,sampleclean采用了一个很好的策略。它采用异步方式以规避延迟,并使用采样来规避数据体量巨大的问题。此外,sampleclean在一个系统中结合了所有三个方面因素(算法、机器和人),因此变得更加高效。

更多使用sampleclean的信息,请访问:http://sampleclean.org/guide/ 和http://sampleclean.org/release.html。

为了更好地说明,让我们假设一个有四个数据表的机器学习项目:

要清洗这个数据集,我们需要:

无论是使用sql还是r语言命令,都要计算每个变量有多少个缺失值。

如果我们选择的策略是均值填充,那么用平均值填补缺失值。

尽管上述工作很容易实现,但是在数据体量巨大的情况下,这样做有可能非常耗时。因此,为了提高效率,我们可能需要将数据分割成许多子集,同时并行完成前面的步骤,spark是完成此项工作的最佳计算平台。

在databricks r notebook环境中,我们可以先用r语言命令sum(is.na(x))创建notebook来计算数据缺失的情况。

为了用平均值替代缺失值,我们可以使用下面的代码:

在spark中,我们可以轻松地对所有的数据集群使用r notebook。

继续阅读