天天看点

Linux内核开发之阻塞非阻塞IO----轮询操作

Linux内核开发之阻塞非阻塞IO----轮询操作

“小王,来聊聊,今天面试的情况怎么样,应该挺顺利的吧..”看着小王平淡的眉头,我问道。

“唉,别提了,你说,我的运气咋这差呢,面试前你不是给我讲了有关阻塞的问题吗,我见了面试官是吧,还跟他好好的用今天排队的例子说了有关阻塞的问题,但是..”小王哀声叹气地说到。

“别但是了,怎么啦..”

“可问题是面试官压根就没打算问我有关阻塞的问题及解决方案,但是问我说:这样吧,你给我说说在Linux设备驱动中有关非阻塞的方法,我这一听,傻眼了不是,你刚好给我讲的是阻塞的东西,可人家偏要问我有关非阻塞的问题,我..”小王欲哭无泪啊..

“怎么这样呢,算了,机会多的是,亡羊补牢,我现在就给你说说有关非阻塞的问题----Linux设备驱动程序之阻塞非阻塞IO----轮询操作”。

通过上一节,我们都明白了,有关阻塞的相关知识(不知道,那我没辙了,饭送到嘴,你还挑食,难不成我拿把起子把嘴撬开不成,自己看上一篇吧),现在就来聊聊对

立面非阻塞。

使用非阻塞I/O的应用程序通常会使用select()和poll()系统调用查询是否可对设备进行无阻塞的访问,这两个系统调用最终又会引发设备驱动中的poll()函数被执行

,所以我们的问题就集中到了如何编写设备驱动中的poll()函数就可以了。二话不说,先来看看设备驱动中的poll()函数原型:

unsigned int (*poll)(struct file *filp, struct poll_table *wait);

这个函数要进行下面两项工作。首先,对可能引起设备文件状态变化的等待队列调用poll_wait(),将对应的等待队列头添加到poll_table.然后,返回表示是否能对设备进行无阻塞读写访问的掩码。在上面提到了一个poll_wait()函数,它的原型:

void poll_wait(struct file *filp, wait_queue_head_t *queue, poll_table *wait);

它的作用就是把当前进程添加到wait参数指定的等待列表(poll_table)中。需要注意的是这个函数是不会引起阻塞的,呵呵,谁给它取得个名字带wait的,给咱们添这么多麻烦。

“等等,你先停停,你是高手,我可是菜鸟呢,你先给我说说poll_table结构吧,心里总是想它是什么..”小王打断我道。

行行,说起这个结构,我也是费了一番周折,它定义在“include/linux/poll.h, line 38“,具体如下:

typedef struct poll_table_struct {
    poll_queue_proc qproc;
    unsigned long key;
} poll_table;   看看,其实没什么吧,不要想的太复杂了      
经过以上驱动程序的poll()函数应该返回设备资源的可获取状态,即POLLIN,POLLOUT,POLLPRI,POLLERR,POLLNVAL等宏的位"或"结果.每个宏的含义都表示设备的一种状态,如:      
常量 说明
POLLIN 普通或优先级带数据可读
POLLRDNORM 普通数据可读
POLLRDBAND 优先级带数据可读
POLLPRI 高优先级数据可读
POLLOUT 普通数据可写
POLLWRNORM 普通数据可写
POLLWRBAND 优先级带数据可写
POLLERR 发生错误
POLLHUP 发生挂起
POLLNVAL 描述字不是一个打开的文件
"小王,你明白了没.."看着小王眨巴眨巴的小眼睛,我说。      
"呵呵,你干脆给我来个典型模板,行不?"小王苛求道。      
行,没问题,你现在特殊时期,我是有求必应。请看下边:      
static unsigned int XXX_poll(struct file *filp, poll_table *wait)
{
    unsigned int mask = 0;
        struct XXX_dev *dev = filp->private_data;     //获得设备结构指针
    ...
    poll_wait(filp, &dev->r_wait, wait);    //加读等待对列头
    poll_wait(filp ,&dev->w_wait, wait);    //加写等待队列头
    
    if(...)//可读
    {
          mask |= POLLIN | POLLRDNORM;    //标识数据可获得
     }
    if(...)//可写
    {
          mask |= POLLOUT | POLLRDNORM;    //标识数据可写入
     }
    ..
    return mask;
}      

"小王,这次看明白了吧,要是还看不明白,我就再给你讲讲用户空间的轮询编程,两个结合起来也许好懂点,行不"。我补充道。

在用户程序中,select()和poll()本质上是一样的, 不同只是引入的方式不同,前者是在BSD UNIX中引入的,后者是在System V中引入的。用的比较广泛的是select

系统调用。原型如下:

int select(int numfds, fd_set *readfds, fd_set *writefds, fd_set *exceptionfds, struct timeval *timeout);

其中readfs,writefds,exceptfds分别是select()监视的读,写和异常处理的文件描述符集合,numfds的值是需要检查的号码最高的文件描述符加1,timeout则是一个时间上限值,超过该值后,即使仍没有描述符准备好也会返回。

struct timeval
{
    int tv_sec;    //秒
    int tv_usec;   //微秒
}      
涉及到文件描述符集合的操作主要有以下几种:      
1)清除一个文件描述符集   FD_ZERO(fd_set *set);      
2)将一个文件描述符加入文件描述符集中    FD_SET(int fd,fd_set *set);      
3)将一个文件描述符从文件描述符集中清除  FD_CLR(int fd,fd_set *set);      
4)判断文件描述符是否被置位    FD_ISSET(int fd,fd_set *set);      

最后我们利用上面的文件描述符集的相关来写个验证添加了设备轮询的驱动,把上边两块联系起来:

Linux内核开发之阻塞非阻塞IO----轮询操作
必要的头文件
#define FIFO_CLEAR 0x1
#define BUFFER_LEN 20
main()
{
  int fd, num;
  char rd_ch[BUFFER_LEN];
  fd_set rfds,wfds;
  /*以非阻塞方式打开/dev/polltest设备文件*/
  fd = open("/dev/polltest", O_RDONLY | O_NONBLOCK);
  if (fd !=  - 1)
  { /*FIFO清0*/
    if (ioctl(fd, FIFO_CLEAR, 0) < 0)
    {
      printf("ioctl command failed\n");
    }
    while (1)
    {
      FD_ZERO(&rfds);
      FD_ZERO(&wfds);
      FD_SET(fd, &rfds);
      FD_SET(fd, &wfds);
      select(fd + 1, &rfds, &wfds, NULL, NULL);
      /*数据可获得*/
      if (FD_ISSET(fd, &rfds))
      {
      	printf("Device can be read now\n");
      }
      /*数据可写入*/
      if (FD_ISSET(fd, &wfds))
      {
      	printf("Device can be written now\n");
      }      
    }
  }
  else
  {
    printf("Device open failure now\n");
  }
} 


最近看了一下Linux Poll 机制的实现,看了韦老师的分析文档,总结如下: 

int poll(struct pollfd *fds,nfds_t nfds, int timeout);

总的来说,Poll机制会判断fds中的文件是否可读,如果可读则会立即返回,返回的值就是可读fd的数量,如果不可读,那么就进程就会休眠timeout这么长的时间,然后再来判断是否有文件可读,如果有,返回fd的数量,如果没有,则返回0.  

在内核中大致上实现过程:

当应用程序调用poll函数的时候,会调用到系统调用sys_poll函数,该函数最终调用do_poll函数,do_poll函数中有一个死循 环,在里面又会利用do_pollfd函数去调用驱动中的poll函数(fds中每个成员的字符驱动程序都会被扫描到),驱动程序中的Poll函数的工作 有两个,一个就是调用poll_wait 函数,把进程挂到等待队列中去(这个是必须的,你要睡眠,必须要在一个等待队列上面,否则到哪里去唤醒你呢??),另一个是确定相关的fd是否有内容可 读,如果可读,就返回1,否则返回0,如果返回1 ,do_poll函数中的count++,    然后  do_poll函数然后判断三个条件(if (count ||!timeout || signal_pending(current)))如果成立就直接跳出,如果不成立,就睡眠timeout个jiffes这么长的时间(调用schedule_timeout实现睡眠),如果在这段时间内没有其他进程去唤醒它,那么第二次执行判断的时候就会跳出死循环。如果在这段时间内有其他进程唤醒它,那么也可以跳出死循环返回(例如我们可以利用中断处理函数去唤醒它,这样的话一有数据可读,就可以让它立即返回)。




poll机制分析

韦东山2009.12.10

所有的系统调用,基于都可以在它的名字前加上“sys_”前缀,这就是它在内核中对应的函数。比如系统调用open、read、write、poll,与之对应的内核函数为:sys_open、sys_read、sys_write、sys_poll。

 

一、内核框架:

对于系统调用poll或select,它们对应的内核函数都是sys_poll。分析sys_poll,即可理解poll机制。

1.      sys_poll函数位于fs/select.c文件中,代码如下:

asmlinkagelong sys_poll(struct pollfd __user *ufds, unsigned int nfds,

                 long timeout_msecs)

{

         s64 timeout_jiffies;

 

         if (timeout_msecs > 0) {

#ifHZ > 1000

             /* We can only overflow if HZ >1000 */

             if (timeout_msecs / 1000 >(s64)0x7fffffffffffffffULL / (s64)HZ)

                 timeout_jiffies = -1;

             else

#endif

                 timeout_jiffies =msecs_to_jiffies(timeout_msecs);

         } else {

             /* Infinite (< 0) or no (0)timeout */

             timeout_jiffies = timeout_msecs;

         }

 

         return do_sys_poll(ufds,nfds, &timeout_jiffies);

}

它对超时参数稍作处理后,直接调用do_sys_poll。

 

2.      do_sys_poll函数也位于位于fs/select.c文件中,我们忽略其他代码:

intdo_sys_poll(struct pollfd __user *ufds, unsigned int nfds, s64 *timeout)

{

……

poll_initwait(&table);

……

         fdcount = do_poll(nfds, head,&table, timeout);

……

}

 

poll_initwait函数非常简单,它初始化一个poll_wqueues变量table:

poll_initwait> init_poll_funcptr(&pwq->pt, __pollwait); > pt->qproc = qproc;

即table->pt->qproc= __pollwait,__pollwait将在驱动的poll函数里用到。

 

 

3.      do_sys_poll函数位于fs/select.c文件中,代码如下:

 

static int do_poll(unsigned int nfds,  struct poll_list *list,

            struct poll_wqueues *wait, s64 *timeout)

{

01 ……

02   for (;;){

03 ……

04                   if(do_pollfd(pfd, pt)) {

05                           count++;

06                           pt = NULL;

07                   }

08 ……

09       if(count || !*timeout || signal_pending(current))

10           break;

11       count= wait->error;

12       if(count)

13           break;

14

15       if(*timeout < 0) {

16           /*Wait indefinitely */

17           __timeout= MAX_SCHEDULE_TIMEOUT;

18       }else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT-1)) {

19           /*

20           * Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in

21           * a loop

22           */

23           __timeout= MAX_SCHEDULE_TIMEOUT - 1;

24           *timeout-= __timeout;

25       }else {

26           __timeout= *timeout;

27           *timeout= 0;

28       }

29 

30       __timeout= schedule_timeout(__timeout); // 休眠时间由应用提供

31       if(*timeout >= 0)

32           *timeout+= __timeout;

33   }

34   __set_current_state(TASK_RUNNING);

35   returncount;

36 }

 

分析其中的代码,可以发现,它的作用如下:

①    从02行可以知道,这是个循环,它退出的条件为:

a.      09行的3个条件之一(count非0,超时、有信号等待处理)

count顺0表示04行的do_pollfd至少有一个成功。

b.      11、12行:发生错误

②    重点在do_pollfd函数,后面再分析

③    第30行,让本进程休眠一段时间,注意:应用程序执行poll调用后,如果①②的条件不满足,进程就会进入休眠。那么,谁唤醒呢?除了休眠到指定时间被系统唤醒外,还可以被驱动程序唤醒──记住这点,这就是为什么驱动的poll里要调用poll_wait的原因,后面分析。

 

4.      do_pollfd函数位于fs/select.c文件中,代码如下:

static inline unsigned int do_pollfd(struct pollfd*pollfd, poll_table *pwait)

{

……

             if(file->f_op && file->f_op->poll)

                     mask= file->f_op->poll(file, pwait);

……

}

 

可见,它就是调用我们的驱动程序里注册的poll函数。

 

二、驱动程序:

驱动程序里与poll相关的地方有两处:一是构造file_operation结构时,要定义自己的poll函数。二是通过poll_wait来调用上面说到的__pollwait函数,pollwait的代码如下:

staticinline void poll_wait(struct file * filp, wait_queue_head_t * wait_address,poll_table *p)

{

         if (p && wait_address)

             p->qproc(filp, wait_address, p);

}

p->qproc就是__pollwait函数,从它的代码可知,它只是把当前进程挂入我们驱动程序里定义的一个队列里而已。它的代码如下:

staticvoid __pollwait(struct file *filp, wait_queue_head_t *wait_address,

                         poll_table *p)

{

         struct poll_table_entry *entry =poll_get_entry(p);

         if (!entry)

             return;

         get_file(filp);

         entry->filp = filp;

         entry->wait_address = wait_address;

         init_waitqueue_entry(&entry->wait,current);

         add_wait_queue(wait_address,&entry->wait);

}

 

执行到驱动程序的poll_wait函数时,进程并没有休眠,我们的驱动程序里实现的poll函数是不会引起休眠的。让进程进入休眠,是前面分析的do_sys_poll函数的30行“__timeout = schedule_timeout(__timeout)”。

poll_wait只是把本进程挂入某个队列,应用程序调用poll > sys_poll> do_sys_poll > poll_initwait,do_poll > do_pollfd > 我们自己写的poll函数后,再调用schedule_timeout进入休眠。如果我们的驱动程序发现情况就绪,可以把这个队列上挂着的进程唤醒。可见,poll_wait的作用,只是为了让驱动程序能找到要唤醒的进程。即使不用poll_wait,我们的程序也有机会被唤醒:chedule_timeout(__timeout),只是休眠__time_out这段时间。

 

现在来总结一下poll机制:

1. poll > sys_poll > do_sys_poll >poll_initwait,poll_initwait函数注册一下回调函数__pollwait,它就是我们的驱动程序执行poll_wait时,真正被调用的函数。

 

2. 接下来执行file->f_op->poll,即我们驱动程序里自己实现的poll函数

   它会调用poll_wait把自己挂入某个队列,这个队列也是我们的驱动自己定义的;

   它还判断一下设备是否就绪。

 

3. 如果设备未就绪,do_sys_poll里会让进程休眠一定时间,这个时间是应用提供的“超时时间”

 

4. 进程被唤醒的条件有2:一是上面说的“一定时间”到了,二是被驱动程序唤醒。驱动程序发现条件就绪时,就把“某个队列”上挂着的进程唤醒,这个队列,就是前面通过poll_wait把本进程挂过去的队列。

 

5. 如果驱动程序没有去唤醒进程,那么chedule_timeout(__timeou)超时后,会重复2、3动作1次,直到应用程序的poll调用传入的时间到达, 然后返回。