天天看点

Python基础7-画图画图

画图

python放烟花

效果图

Python基础7-画图画图
'''
FIREWORKS SIMULATION WITH TKINTER
*self-containing code
*to run: simply type python simple.py in your console
*compatible with both Python 2 and Python 3
*Dependencies: tkinter, Pillow (only for background image)
*The design is based on high school physics, with some small twists only for aesthetics purpose
'''

import tkinter as tk

# from tkinter import messagebox

# from tkinter import PhotoImage

from PIL import Image, ImageTk

from time import time, sleep

from random import choice, uniform, randint

from math import sin, cos, radians

# gravity, act as our constant g, you can experiment by changing it

GRAVITY = 0.05

# list of color, can choose randomly or use as a queue (FIFO)

colors = ['red', 'blue', 'yellow', 'white', 'green', 'orange', 'purple', 'seagreen', 'indigo', 'cornflowerblue']

'''
Generic class for particles
particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed
from canvas
Attributes:
    - id: identifier of a particular particle in a star
    - x, y: x,y-coordinate of a star (point of explosion)
    - vx, vy: speed of particle in x, y coordinate
    - total: total number of particle in a star
    - age: how long has the particle last on canvas
    - color: self-explantory
    - cv: canvas
    - lifespan: how long a particle will last on canvas
'''


class part:

    def __init__(self, cv, idx, total, explosion_speed, x=0., y=0., vx=0., vy=0., size=2., color='red', lifespan=2,
                 **kwargs):

        self.id = idx

        self.x = x

        self.y = y

        self.initial_speed = explosion_speed

        self.vx = vx

        self.vy = vy

        self.total = total

        self.age = 0

        self.color = color

        self.cv = cv

        self.cid = self.cv.create_oval(

            x - size, y - size, x + size,

            y + size, fill=self.color)

        self.lifespan = lifespan

    def update(self, dt):

        self.age += dt

        # particle expansions

        if self.alive() and self.expand():

            move_x = cos(radians(self.id * 360 / self.total)) * self.initial_speed

            move_y = sin(radians(self.id * 360 / self.total)) * self.initial_speed

            self.cv.move(self.cid, move_x, move_y)

            self.vx = move_x / (float(dt) * 1000)



        # falling down in projectile motion

        elif self.alive():

            move_x = cos(radians(self.id * 360 / self.total))

            # we technically don't need to update x, y because move will do the job

            self.cv.move(self.cid, self.vx + move_x, self.vy + GRAVITY * dt)

            self.vy += GRAVITY * dt



        # remove article if it is over the lifespan

        elif self.cid is not None:

            cv.delete(self.cid)

            self.cid = None

    # define time frame for expansion

    def expand(self):

        return self.age <= 1.2

    # check if particle is still alive in lifespan

    def alive(self):

        return self.age <= self.lifespan


'''
Firework simulation loop:
Recursively call to repeatedly emit new fireworks on canvas
a list of list (list of stars, each of which is a list of particles)
is created and drawn on canvas at every call, 
via update protocol inside each 'part' object 
'''


def simulate(cv):
    t = time()

    explode_points = []

    wait_time = randint(10, 100)

    numb_explode = randint(6, 10)

    # create list of list of all particles in all simultaneous explosion

    for point in range(numb_explode):

        objects = []

        x_cordi = randint(50, 2000)

        y_cordi = randint(50, 500)

        speed = uniform(0.5, 1.5)

        size = uniform(0.5, 3)

        color = choice(colors)

        explosion_speed = uniform(0.2, 1)

        total_particles = randint(10, 50)

        for i in range(1, total_particles):
            r = part(cv, idx=i, total=total_particles, explosion_speed=explosion_speed, x=x_cordi, y=y_cordi,

                     vx=speed, vy=speed, color=color, size=size, lifespan=uniform(0.6, 1.75))

            objects.append(r)

        explode_points.append(objects)

    total_time = .0

    # keeps undate within a timeframe of 1.8 second

    while total_time < 1.8:

        sleep(0.01)

        tnew = time()

        t, dt = tnew, tnew - t

        for point in explode_points:

            for item in point:
                item.update(dt)

        cv.update()

        total_time += dt

    # recursive call to continue adding new explosion on canvas

    root.after(wait_time, simulate, cv)


def close(*ignore):
    """Stops simulation loop and closes the window."""

    global root

    root.quit()


if __name__ == '__main__':
    root = tk.Tk()

    cv = tk.Canvas(root, height=1015, width=2180)

    # use a nice background image

    image = Image.open("./timg.jpg")  # 背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好

    photo = ImageTk.PhotoImage(image)

    cv.create_image(0, 0, image=photo, anchor='nw')

    cv.pack()

    root.protocol("WM_DELETE_WINDOW", close)

    root.after(100, simulate, cv)

    root.mainloop()