天天看点

【Hadoop学习之MapReduce】_16MR之WordCount案例实操

文章目录

      • 一、需求分析
      • 二、环境准备
      • 三、编写程序
      • 四、本地测试
      • 五、集群测试

一、需求分析

  1. 需求

    在给定的文本文件中统计输出每一个单词出现的总次数

  2. 按照

    MapReduce

    编程规范,编写

    Mapper

    (1)将

    MapTask

    传给我们的文本内容先转换成

    String

    (2)根据空格将这一行切分成单词

    (3)将单词输出为

    <k,v>

    格式
  3. 按照

    MapReduce

    编程规范,编写

    Reducer

    (1)汇总各个

    key

    的个数

    (2)输出该

    key

    的总次数
  4. 按照

    MapReduce

    编程规范,编写

    Driver

    (1)获取配置信息,获取

    job

    对象实例

    (2)指定本程序的

    jar

    包所在的本地路径

    (3)关联

    MapReducer

    业务类

    (4)指定Mapper输出数据的

    <k,v>

    类型

    (5)指定最终输出数据的

    <k,v>

    类型

    (6)指定

    job

    的输入原始文件所在目录

    (7)指定

    job

    的输出结果所在目录

    (8)提交作业

二、环境准备

  1. 创建一个名为

    mrWordCount

    Maven

    工程
  2. pom.xml

    文件中添加如下依赖
    <dependencies>
    		<dependency>
    			<groupId>junit</groupId>
    			<artifactId>junit</artifactId>
    			<version>RELEASE</version>
    		</dependency>
    		<dependency>
    			<groupId>org.apache.logging.log4j</groupId>
    			<artifactId>log4j-core</artifactId>
    			<version>2.8.2</version>
    		</dependency>
    		<dependency>
    			<groupId>org.apache.hadoop</groupId>
    			<artifactId>hadoop-common</artifactId>
    			<version>2.7.2</version>
    		</dependency>
    		<dependency>
    			<groupId>org.apache.hadoop</groupId>
    			<artifactId>hadoop-client</artifactId>
    			<version>2.7.2</version>
    		</dependency>
    		<dependency>
    			<groupId>org.apache.hadoop</groupId>
    			<artifactId>hadoop-hdfs</artifactId>
    			<version>2.7.2</version>
    		</dependency>
    </dependencies>
               
  3. 在项目的

    src/main/resources

    目录下,新建一个文件,命名为

    log4j.properties

    ,在文件中填入
    log4j.rootLogger=INFO, stdout
    log4j.appender.stdout=org.apache.log4j.ConsoleAppender
    log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
    log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
    log4j.appender.logfile=org.apache.log4j.FileAppender
    log4j.appender.logfile.File=target/spring.log
    log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
    log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
               

三、编写程序

本文使用idea进行相关操作:

  1. 创建包名:

    com.easysir.wordcount

  2. 创建

    WordcountMapper

    package com.easysir.wordcount;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import java.io.IOException;
    
    // 其中LongWritable类型为输入数据行的偏移量
    public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
        Text k = new Text();
        IntWritable v = new IntWritable(1);
    
        @Override
        protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
    
            // 1 获取一行
            String line = value.toString();
    
            // 2 按空格切割
            String[] words = line.split(" ");
    
            // 3 输出结果
            for (String word : words) {
                k.set(word);
                context.write(k, v);
            }
        }
    
    }
               
  3. 创建

    WordcountReducer

    package com.easysir.wordcount;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    import java.io.IOException;
    
    public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        int sum;
        IntWritable v = new IntWritable();
    
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
    
            // 1 累加求和
            sum = 0;
            for (IntWritable count : values) {
                sum += count.get();
            }
    
            // 2 输出
            v.set(sum);
            context.write(key,v);
        }
    
    }
               
  4. 创建

    WordcountDriver

    package com.easysir.wordcount;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    
    public class WordcountDriver {
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    
            // 1 获取配置信息以及封装任务
            Configuration configuration = new Configuration();
            Job job = Job.getInstance(configuration);
    
            // 2 设置jar加载路径
            job.setJarByClass(WordcountDriver.class);
    
            // 3 设置map和reduce类
            job.setMapperClass(WordcountMapper.class);
            job.setReducerClass(WordcountReducer.class);
    
            // 4 设置map输出
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
    
            // 5 设置最终输出kv类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
    
            // 6 设置输入和输出路径
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            // 7 提交
            boolean result = job.waitForCompletion(true);
    
            System.exit(result ? 0 : 1);
        }
    
    }
               

四、本地测试

  1. 填写路径参数

    注意:输出路径文件夹不能为已存在的文件夹,否则会报错

    【Hadoop学习之MapReduce】_16MR之WordCount案例实操
    【Hadoop学习之MapReduce】_16MR之WordCount案例实操
  2. 运行程序
    【Hadoop学习之MapReduce】_16MR之WordCount案例实操
  3. 查看结果
    【Hadoop学习之MapReduce】_16MR之WordCount案例实操
    easysir	2
    haha	2
    heihei	1
    hello	2
    nihao	1
    wanghu	1
               

五、集群测试

  1. 添加Maven打包插件依赖,注意修改

    WordcountDriver

    路径
    <build>
            <plugins>
                <plugin>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>2.3.2</version>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                    </configuration>
                </plugin>
                <plugin>
                    <artifactId>maven-assembly-plugin </artifactId>
                    <configuration>
                        <descriptorRefs>
                            <descriptorRef>jar-with-dependencies</descriptorRef>
                        </descriptorRefs>
                        <archive>
                            <manifest>
                                <mainClass>com.easysir.wordcount.WordcountDriver</mainClass>
                            </manifest>
                        </archive>
                    </configuration>
                    <executions>
                        <execution>
                            <id>make-assembly</id>
                            <phase>package</phase>
                            <goals>
                                <goal>single</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>
            </plugins>
        </build>
               
  2. 将程序打成jar包
    【Hadoop学习之MapReduce】_16MR之WordCount案例实操
  3. 将jar包拷贝到

    Hadoop

    集群中,选择无依赖jar包
  4. 启动

    Hadoop

    集群
  5. 执行

    WordCount

    程序
    # hadoop jar jar包 启动类 输入路径 输出路径
    hadoop jar ./mrWordCount-1.0-SNAPSHOT.jar com.easysir.wordcount.WordcountDriver /2020 /output
               
  6. 查看结果
    hadoop fs -cat /output/part-r-00000
               

继续阅读