天天看点

SHA:安全散列算法

SHA:Secure Hash Algorithm:安全散列算法
	
散列算法
	散列是信息的提炼,通常其长度要比信息小得多,且为一个固定长度。加密性强的散列一定是不可逆的,这就意味着通过散列结果,无法推出任何部分的原始信息。任何输入信息的变化,哪怕仅一位,都将导致散列结果的明显变化,这称之为雪崩效应。散列还应该是防冲突的,即找不出具有相同散列结果的两条信息。具有这些特性的散列结果就可以用于验证信息是否被修改。

原理
	SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。

经过加密后的字符串的个数是固定的:40
      
package com.enterise.test;
public class SHA1 {
	
	private final int[] abcde = { 0x67452301,0xefcdab89,0x98badcfe,
	0x10325476,0xc3d2e1f0 };
	
	// 摘要数据存储数组
	private int[] digestInt = new int[5];
	
	// 计算过程中的临时数据存储数组
	private int[] tmpData = new int[80];
	
	
	
	//	测试
	public static void main(String[] args) {
		String param = "";
		System.out.println("加密前:" + param);
		System.out.println("length-->"+param.length());
		
		String digest = new SHA1().getDigestOfString(param.getBytes());
		System.out.println("加密后:" + digest);
		System.out.println("length-->"+digest.length());
	}
	
	// 计算sha-1摘要
	private int process_input_bytes(byte[] bytedata) {
	
		// 初试化常量
		System.arraycopy(abcde,0,digestInt,0,abcde.length);
		
		// 格式化输入字节数组,补10及长度数据
		byte[] newbyte = byteArrayFormatData(bytedata);
		
		// 获取数据摘要计算的数据单元个数
		int MCount = newbyte.length / 64;
		
		// 循环对每个数据单元进行摘要计算
		for (int pos = 0; pos < MCount; pos++) {
		
			// 将每个单元的数据转换成16个整型数据,并保存到tmpData的前16个数组元素中
		for (int j = 0; j < 16; j++) {
			tmpData[j] = byteArrayToInt(newbyte,(pos * 64) + (j * 4));
		}
		
	//	摘要计算函数
		encrypt();
		}
		
		return 20;
	}
	
	// 格式化输入字节数组格式
	private byte[] byteArrayFormatData(byte[] bytedata) {
		// 补0数量
		int zeros = 0;
		// 补位后总位数
		int size = 0;
		// 原始数据长度
		int n = bytedata.length;
		// 模64后的剩余位数
		int m = n % 64;
		// 计算添加0的个数以及添加10后的总长度
			if (m < 56) {
				zeros = 55 - m;
				size = n - m + 64;
			} else if (m == 56) {
				zeros = 63;
				size = n + 8 + 64;
			} else {
				zeros = 63 - m + 56;
				size = (n + 64) - m + 64;
			}
		// 补位后生成的新数组内容
		byte[] newbyte = new byte[size];
		// 复制数组的前面部分
		System.arraycopy(bytedata,0,newbyte,0,n);
		// 获得数组Append数据元素的位置
		int l = n;
		// 补1操作
		newbyte[l++] = (byte) 0x80;
		// 补0操作
		for (int i = 0; i < zeros; i++) {
			newbyte[l++] = (byte) 0x00;
		}
		// 计算数据长度,补数据长度位共8字节,长整型
		long N = (long) n * 8;
		byte h8 = (byte) (N & 0xFF);
		byte h7 = (byte) ((N >> 8) & 0xFF);
		byte h6 = (byte) ((N >> 16) & 0xFF);
		byte h5 = (byte) ((N >> 24) & 0xFF);
		byte h4 = (byte) ((N >> 32) & 0xFF);
		byte h3 = (byte) ((N >> 40) & 0xFF);
		byte h2 = (byte) ((N >> 48) & 0xFF);
		byte h1 = (byte) (N >> 56);
		
		newbyte[l++] = h1;
		newbyte[l++] = h2;
		newbyte[l++] = h3;
		newbyte[l++] = h4;
		newbyte[l++] = h5;
		newbyte[l++] = h6;
		newbyte[l++] = h7;
		newbyte[l++] = h8;
		
		return newbyte;
	}
	private int f1(int x,int y,int z) {
		return (x & y) | (~x & z);
	}
	
	private int f2(int x,int y,int z) {
		return x ^ y ^ z;
	}
	
	private int f3(int x,int y,int z) {
		return (x & y) | (x & z) | (y & z);
	}
	
	private int f4(int x,int y) {
		return (x << y) | x >>> (32 - y);
	}
	//
//	单元摘要计算函数
	private void encrypt() {
		for (int i = 16; i <= 79; i++) {
			tmpData[i] = f4(tmpData[i - 3] ^ tmpData[i - 8] ^ tmpData[i - 14]
			^ tmpData[i - 16],1);
		}
		
		int[] tmpabcde = new int[5];
		
		for (int i1 = 0; i1 < tmpabcde.length; i1++) {
			tmpabcde[i1] = digestInt[i1];
		}
		
		for (int j = 0; j <= 19; j++) {
			int tmp = f4(tmpabcde[0],5)
			+ f1(tmpabcde[1],tmpabcde[2],tmpabcde[3]) + tmpabcde[4]
			+ tmpData[j] + 0x5a827999;
			tmpabcde[4] = tmpabcde[3];
			tmpabcde[3] = tmpabcde[2];
			tmpabcde[2] = f4(tmpabcde[1],30);
			tmpabcde[1] = tmpabcde[0];
			tmpabcde[0] = tmp;
		}
		
		for (int k = 20; k <= 39; k++) {
			int tmp = f4(tmpabcde[0],5)
			+ f2(tmpabcde[1],tmpabcde[2],tmpabcde[3]) + tmpabcde[4]
			+ tmpData[k] + 0x6ed9eba1;
			tmpabcde[4] = tmpabcde[3];
			tmpabcde[3] = tmpabcde[2];
			tmpabcde[2] = f4(tmpabcde[1],30);
			tmpabcde[1] = tmpabcde[0];
			tmpabcde[0] = tmp;
		}
		
		for (int l = 40; l <= 59; l++) {
			int tmp = f4(tmpabcde[0],5)
			+ f3(tmpabcde[1],tmpabcde[2],tmpabcde[3]) + tmpabcde[4]
			+ tmpData[l] + 0x8f1bbcdc;
			tmpabcde[4] = tmpabcde[3];
			tmpabcde[3] = tmpabcde[2];
			tmpabcde[2] = f4(tmpabcde[1],30);
			tmpabcde[1] = tmpabcde[0];
			tmpabcde[0] = tmp;
		}
		
		for (int m = 60; m <= 79; m++) {
			int tmp = f4(tmpabcde[0],5)
			+ f2(tmpabcde[1],tmpabcde[2],tmpabcde[3]) + tmpabcde[4]
			+ tmpData[m] + 0xca62c1d6;
			tmpabcde[4] = tmpabcde[3];
			tmpabcde[3] = tmpabcde[2];
			tmpabcde[2] = f4(tmpabcde[1],30);
			tmpabcde[1] = tmpabcde[0];
			tmpabcde[0] = tmp;
		}
		
		for (int i2 = 0; i2 < tmpabcde.length; i2++) {
			digestInt[i2] = digestInt[i2] + tmpabcde[i2];
		}
		
		for (int n = 0; n < tmpData.length; n++) {
			tmpData[n] = 0;
		}
	}
	
	// 4字节数组转换为整数
	private int byteArrayToInt(byte[] bytedata,int i) {
		return ((bytedata[i] & 0xff) << 24) | ((bytedata[i + 1] & 0xff) << 16)
		| ((bytedata[i + 2] & 0xff) << 8) | (bytedata[i + 3] & 0xff);
	}
	
	
	// 整数转换为4字节数组
	private void intToByteArray(int intValue,byte[] byteData,int i) {
		byteData[i] = (byte) (intValue >>> 24);
		byteData[i + 1] = (byte) (intValue >>> 16);
		byteData[i + 2] = (byte) (intValue >>> 8);
		byteData[i + 3] = (byte) intValue;
	}
	
	// 将字节转换为十六进制字符串
	private static String byteToHexString(byte ib) {
		char[] Digit = { '0','1','2','3','4','5','6','7','8','9','A',
		'B','C','D','E','F' };
		char[] ob = new char[2];
		ob[0] = Digit[(ib >>> 4) & 0X0F];
		ob[1] = Digit[ib & 0X0F];
		String s = new String(ob);
		
		return s;
	}
	
	// 将字节数组转换为十六进制字符串
	private static String byteArrayToHexString(byte[] bytearray) {
		String strDigest = "";
		for (int i = 0; i < bytearray.length; i++) {
			strDigest += byteToHexString(bytearray[i]);
		}
		
		return strDigest;
	}
	// 计算sha-1摘要,返回相应的字节数组
	public byte[] getDigestOfBytes(byte[] byteData) {
		process_input_bytes(byteData);
		byte[] digest = new byte[20];
		
		for (int i = 0; i < digestInt.length; i++) {
			intToByteArray(digestInt[i],digest,i * 4);
		}
		
		return digest;
	}
	
	// 计算sha-1摘要,返回相应的十六进制字符串
	public String getDigestOfString(byte[] byteData) {
		return byteArrayToHexString(getDigestOfBytes(byteData));
	}

}