天天看点

matlab 遗传算法m函数,MATLAB遗传算法工具箱函数应用

核心函数:

(1)function

[pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数

【输出参数】

pop--生成的初始种群

【输入参数】

num--种群中的个体数目

bounds--代表变量的上下界的矩阵

eevalFN--适应度函数

eevalOps--传递给适应度函数的参数

options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如

precision--变量进行二进制编码时指定的精度

F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] =

ga(bounds,evalFN,evalOps,startPop,opts,...

termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数

【输出参数】

x--求得的最优解

endPop--最终得到的种群

bPop--最优种群的一个搜索轨迹

【输入参数】

bounds--代表变量上下界的矩阵

evalFN--适应度函数

evalOps--传递给适应度函数的参数

startPop-初始种群

opts[epsilon

prob_ops

display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6

1 0]

termFN--终止函数的名称,如['maxGenTerm']

termOps--传递个终止函数的参数,如[100]

selectFN--选择函数的名称,如['normGeomSelect']

selectOps--传递个选择函数的参数,如[0.08]

xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover

simpleXover']

xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]

mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation

nonUnifMutation unifMutation']

mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函数必须放在工作目录下

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10*sin(5*x)+7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0

9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0

9],'fitness',[],initPop,[1e-6 1

1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %次遗传迭代

运算借过为:x =

7.8562

24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

function [eval]=f(sol)

numv=size(sol,2);

x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options)

numv=size(sol,2)-1;

x=sol(1:numv);

eval=f(x);

eval=-eval;

%遗传算法的matlab代码

bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为

p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

安装

果是Matlab安装光盘上的工具箱,重新执行安装程序,选中即可。如果是单独下载的工具箱,一般情况下仅需要把新的工具箱解压到某个目录,然后用

addpath对于多个目录的使用genpath()或者pathtool添加工具箱的路径,然后用which

newtoolbox_command.m来检验是否可以访问。如果能够显示新设置的路径,则表明该工具箱可以使用了。具体请看工具箱自己代的

README文件。

举例:

下载遗传算法工具箱,解压后,里边有一个目录gaot

若matlab安装在D:\MATLAB6p5

将gaot目录拷贝至D:\MATLAB6p5\toolbox

然后运行matlab,在命令窗口输入addpath D:\MATLAB6p5\toolbox\gaot回车,来添加路径。

然后在gaot目录下,任意找一个m文件,以ga.m为例

在命令窗口中输入which ga.m

如果显示出该文件路径,如 D:\MATLAB6p5\toolbox\gaot\ga.m

则安装成功