天天看点

android 刷新view位置,Android View刷新机制实例分析

本文实例讲述了Android View刷新机制。分享给大家供大家参考,具体如下:

一、总体说明

在Android的布局体系中,父View负责刷新、布局显示子View;而当子View需要刷新时,则是通知父View来完成。

二、代码分析

1).ViewGroup的addView方法,理解参数的意义和传递

invalidate调用父类View的方法

addViewInner方法主要做的事情是

view的dispatchAttachedToWindow(AttachInfo info, int visibility)方法

1).View的invalidate方法,这是一个从下第向上回溯的过程,每一层的父View都将自己的显示区域与传入的刷新

Rect做交集。

void invalidate(boolean invalidateCache) {

if (ViewDebug.TRACE_HIERARCHY) {

ViewDebug.trace(this, ViewDebug.HierarchyTraceType.INVALIDATE);

}

if (skipInvalidate()) {

return;

}

if ((mPrivateFlags & (DRAWN | HAS_BOUNDS)) == (DRAWN | HAS_BOUNDS) ||

(invalidateCache && (mPrivateFlags & DRAWING_CACHE_VALID) == DRAWING_CACHE_VALID) ||

(mPrivateFlags & INVALIDATED) != INVALIDATED || isOpaque() != mLastIsOpaque) {

mLastIsOpaque = isOpaque();

mPrivateFlags &= ~DRAWN;

mPrivateFlags |= DIRTY;

if (invalidateCache) {

mPrivateFlags |= INVALIDATED;

mPrivateFlags &= ~DRAWING_CACHE_VALID;

}

final AttachInfo ai = mAttachInfo;

final ViewParent p = mParent;

//noinspection PointlessBooleanExpression,ConstantConditions

if (!HardwareRenderer.RENDER_DIRTY_REGIONS) {

if (p != null && ai != null && ai.mHardwareAccelerated) {

// fast-track for GL-enabled applications; just invalidate the whole hierarchy

// with a null dirty rect, which tells the ViewAncestor to redraw everything

p.invalidateChild(this, null);

return;

}

}

if (p != null && ai != null) {

final Rect r = ai.mTmpInvalRect;

r.set(0, 0, mRight - mLeft, mBottom - mTop);

// Don't call invalidate -- we don't want to internally scroll

// our own bounds

p.invalidateChild(this, r);//调用子类的方法完成

}

}

}

2)ViewGrop的invalidateChild方法

public final void invalidateChild(View child, final Rect dirty) {

ViewParent parent = this;

final AttachInfo attachInfo = mAttachInfo;

if (attachInfo != null) {

final int[] location = attachInfo.mInvalidateChildLocation;

// 需要刷新的子View的位置

location[CHILD_LEFT_INDEX] = child.mLeft;

location[CHILD_TOP_INDEX] = child.mTop;

// If the child is drawing an animation, we want to copy this flag onto

// ourselves and the parent to make sure the invalidate request goes through

final boolean drawAnimation = (child.mPrivateFlags & DRAW_ANIMATION) == DRAW_ANIMATION;

// Check whether the child that requests the invalidate is fully opaque

final boolean isOpaque = child.isOpaque() && !drawAnimation && child.getAnimation() != null;

// Mark the child as dirty, using the appropriate flag

// Make sure we do not set both flags at the same time

final int opaqueFlag = isOpaque ? DIRTY_OPAQUE : DIRTY;

do {

View view = null;

if (parent instanceof View) {

view = (View) parent;

}

if (drawAnimation) {

if (view != null) {

view.mPrivateFlags |= DRAW_ANIMATION;

} else if (parent instanceof ViewRoot) {

((ViewRoot) parent).mIsAnimating = true;

}

}

// If the parent is dirty opaque or not dirty, mark it dirty with the opaque

// flag coming from the child that initiated the invalidate

if (view != null && (view.mPrivateFlags & DIRTY_MASK) != DIRTY) {

view.mPrivateFlags = (view.mPrivateFlags & ~DIRTY_MASK) | opaqueFlag;

}

parent = parent.invalidateChildInParent(location, dirty);

} while (parent != null);

}

}

public ViewParent invalidateChildInParent(final int[] location, final Rect dirty) {

if ((mPrivateFlags & DRAWN) == DRAWN) {

if ((mGroupFlags & (FLAG_OPTIMIZE_INVALIDATE | FLAG_ANIMATION_DONE)) !=

FLAG_OPTIMIZE_INVALIDATE) {

// 根据父View的位置,偏移刷新区域

dirty.offset(location[CHILD_LEFT_INDEX] - mScrollX, location[CHILD_TOP_INDEX] - mScrollY);

final int left = mLeft;

final int top = mTop;

//计算实际可刷新区域

if (dirty.intersect(0, 0, mRight - left, mBottom - top) ||

(mPrivateFlags & DRAW_ANIMATION) == DRAW_ANIMATION) {

mPrivateFlags &= ~DRAWING_CACHE_VALID;

location[CHILD_LEFT_INDEX] = left;

location[CHILD_TOP_INDEX] = top;

return mParent;

}

} else {

mPrivateFlags &= ~DRAWN & ~DRAWING_CACHE_VALID;

location[CHILD_LEFT_INDEX] = mLeft;

location[CHILD_TOP_INDEX] = mTop;

dirty.set(0, 0, mRight - location[CHILD_LEFT_INDEX],

mBottom - location[CHILD_TOP_INDEX]);

return mParent;

}

}

return null;

}

这个向上回溯的过程直到ViewRoot那里结束,由ViewRoot对这个最终的刷新区域做刷新

ViewRoot.java

public void invalidateChild(View child, Rect dirty) {

}

由ViewRoot对象的performTraversals()方法调用draw()方法发起绘制该View树,值得注意的是每次发起绘图时,并不会重新绘制每个View树的视图,而只会重新绘制那些“需要重绘”的视图,View类内部变量包含了一个标志位DRAWN,当该视图需要重绘时,就会为该View添加该标志位。

调用流程 :

mView.draw()开始绘制,draw()方法实现的功能如下:

1 、绘制该View的背景

2 、为显示渐变框做一些准备操作(见5,大多数情况下,不需要改渐变框)

3、调用onDraw()方法绘制视图本身   (每个View都需要重载该方法,ViewGroup不需要实现该方法)

4、调用dispatchDraw ()方法绘制子视图(如果该View类型不为ViewGroup,即不包含子视图,不需要重载该

方法)值得说明的是,ViewGroup类已经为我们重写了dispatchDraw ()的功能实现,应用程序一般不需要重写该

方法,但可以重载父类函数实现具体的功能。

4.1 dispatchDraw()方法内部会遍历每个子视图,调用drawChild()去重新回调每个子视图的draw()方法(注意,这个 地方“需要重绘”的视图才会调用draw()方法)。值得说明的是,ViewGroup类已经为我们重写了dispatch

Draw()的功能实现,应用程序一般不需要重写该方法,但可以重载父类函数实现具体的功能。

希望本文所述对大家Android程序设计有所帮助。