最小正子段和 51Nod - 1065
N个整数组成的序列a 1 ,a 2 ,a 3 ,…,a n ,从中选出一个子序列(a i ,a i+1 ,…a j
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数
Output
Sample Input
8
4
-1
5
-2
-1
2
6
-2
Sample Output
1
code:
#include <iostream>
#include <algorithm>
using namespace std;
struct node{
long long sum;
int pos;
}Node[50005];
bool cmp(node a,node b){
if(a.sum == b.sum){
return a.pos > b.pos;
}
return a.sum < b.sum;
}
int main(){
int i,flag,n;
long long sum = 0,temp,ans = 0;
cin >> n;
Node[0].pos = 0;
Node[0].sum = 0;
for(i = 1; i <= n; i++){
cin >> temp;
sum += temp;
Node[i].pos = i;
Node[i].sum = sum;//求前缀和
}
sort(Node,Node+n+1,cmp);//根据前缀和大小排序
flag = 0;
for(i = 1; i <= n; i++){
if(Node[i].pos - Node[i-1].pos > 0 && Node[i].sum - Node[i-1].sum > 0){//当构成序列(即i < j && f(i) < f(j)时进行判断)找满足这种情况的最小
if(flag == 0){
flag = 1;
ans = Node[i].sum - Node[i-1].sum;
}
else{
if(Node[i].sum - Node[i-1].sum < ans){
ans = Node[i].sum - Node[i-1].sum;
}
}
}
}
cout << ans << endl;
return 0;
}