天天看点

DeepLab 源码分析之 input_preprocess.py

这次我们分析 input_preprocess.py 主要是预处理数据用于DeepLab训练或验证

使用了 core/preprocess_utils.py 的大量函数

首先 import 必要的库

import tensorflow as tf
from deeplab.core import feature_extractor
from deeplab.core import preprocess_utils

# 训练时左右反转的概率
_PROB_OF_FLIP = 
           

函数 preprocess_image_and_label

返回 原图

处理后的图片 [crop_height, crop_width, 3]

标签 [crop_height, crop_width, 1]

def preprocess_image_and_label(image,
                               label,
                               crop_height,
                               crop_width,
                               min_resize_value=None,
                               max_resize_value=None,
                               resize_factor=None,
                               min_scale_factor=,
                               max_scale_factor=,
                               scale_factor_step_size=,
                               ignore_label=,
                               is_training=True,
                               model_variant=None):
  """预处理图片和标签.

  Args:
    image: 输入图像 Input image.
    label: GT分割图 Ground truth annotation label.
    crop_height: The height value used to crop the image and label.
    crop_width: The width value used to crop the image and label.
    min_resize_value: Desired size of the smaller image side.
    max_resize_value: Maximum allowed size of the larger image side.
    resize_factor: Resized dimensions are multiple of factor plus one.
    min_scale_factor: Minimum scale factor value.
    max_scale_factor: Maximum scale factor value.
    scale_factor_step_size: The step size from min scale factor to max scale
      factor. The input is randomly scaled based on the value of
      (min_scale_factor, max_scale_factor, scale_factor_step_size).
    ignore_label: The label value which will be ignored for training and
      evaluation.
    is_training: If the preprocessing is used for training or not.
    model_variant: Model variant (string) for choosing how to mean-subtract the
      images. See feature_extractor.network_map for supported model variants.

  Returns:
    original_image: 原始图像(resized过) Original image (could be resized).
    processed_image: 处理后图像 Preprocessed image.
    label: 处理过的分割图 Preprocessed ground truth segmentation label.

  Raises:
    ValueError: Ground truth label not provided during training.
  """
  # 如果训练阶段没有label, 则报错
  if is_training and label is None:
    raise ValueError('During training, label must be provided.')

  # model_variant  ?
  if model_variant is None:
    tf.logging.warning('Default mean-subtraction is performed. Please specify '
                       'a model_variant. See feature_extractor.network_map for '
                       'supported model variants.')

  # 保存一下原始图像
  original_image = image

  processed_image = tf.cast(image, tf.float32)

  if label is not None:
    label = tf.cast(label, tf.int32)

  # Resize image and label to the desired range.
  if min_resize_value is not None or max_resize_value is not None:
    # 调用core/preprocess_utils.resize_to_range函数
    [processed_image, label] = (
        preprocess_utils.resize_to_range(
            image=processed_image,
            label=label,
            min_size=min_resize_value,
            max_size=max_resize_value,
            factor=resize_factor,
            align_corners=True))
    # 原始图更换为resized后的图片
    original_image = tf.identity(processed_image)

  # 随机放缩数据增强 调用core/preprocess_utils中的两个函数
  scale = preprocess_utils.get_random_scale(
      min_scale_factor, max_scale_factor, scale_factor_step_size)
  processed_image, label = preprocess_utils.randomly_scale_image_and_label(
      processed_image, label, scale)
  processed_image.set_shape([None, None, ])

  # Pad图片和Label到指定大小 [crop_height, crop_width]
  image_shape = tf.shape(processed_image)
  image_height = image_shape[]
  image_width = image_shape[]

  target_height = image_height + tf.maximum(crop_height - image_height, )
  target_width = image_width + tf.maximum(crop_width - image_width, )

  # 用图片均值进行pad图片 core/preprocess_utils
  mean_pixel = tf.reshape(
      feature_extractor.mean_pixel(model_variant), [, , ])
  processed_image = preprocess_utils.pad_to_bounding_box(
      processed_image, , , target_height, target_width, mean_pixel)

  if label is not None:
    label = preprocess_utils.pad_to_bounding_box(
        label, , , target_height, target_width, ignore_label)

  # 随机裁剪 preprocess_utils.random_crop
  if is_training and label is not None:
    processed_image, label = preprocess_utils.random_crop(
        [processed_image, label], crop_height, crop_width)

  processed_image.set_shape([crop_height, crop_width, ])

  if label is not None:
    label.set_shape([crop_height, crop_width, ])

  # 如果是训练阶段,随机翻转
  if is_training:
    # Randomly left-right flip the image and label.
    processed_image, label, _ = preprocess_utils.flip_dim(
        [processed_image, label], _PROB_OF_FLIP, dim=)

  return original_image, processed_image, label
           

继续阅读