图论模板
-
- 一、拓扑排序
-
- 题意
- 代码
- 二、Dijkstra
-
- 题意
- 代码1(朴素版)
- 代码2(堆优化版)
- 三、Bellman-Ford
-
- 题意
- 代码
- 四、spfa
-
- 题意1(最短路)
- 代码1
- 题意2(判负环)
- 代码2
- 五、Floyd
-
- 题意
- 代码
一、拓扑排序
题意
输出拓扑排序,如果不存在输出-1.
代码
void topsort()
{
queue<int> que;
for(int i=1;i<=n;i++)
if(!din[i]) que.push(i), ans[++num] = i;
while(que.size()){
int t = que.front();
que.pop();
for(int i=h[t];~i;i=ne[i]){
int j = e[i];
if(--din[j]==0) que.push(j), ans[++num] = j;
}
}
if(num<n){
cout << -1;
return;
}
for(int i=1;i<=num;i++) cout << ans[i] << ' ';
}
二、Dijkstra
题意
求单源最短路(不存在负边权),不存在返回-1
代码1(朴素版)
int dijkstra()
{
memset(dist,0x3f,sizeof(dist));
dist[1] = 0;
for(int i=1;i<=n;i++){
int t = -1;
for(int j=1;j<=n;j++){
if(!st[j]&&(t==-1||dist[t]>dist[j])){
t = j;
}
}
for(int j=1;j<=n;j++){
dist[j] = min(dist[j],dist[t]+g[t][j]);
}
st[t] = true;
}
if(dist[n]==0x3f3f3f3f) return -1;
return dist[n];
}
代码2(堆优化版)
int dijkstra()
{
memset(dist,0x3f,sizeof(dist));
dist[1] = 0;
priority_queue<pii,vector<pii>,greater<pii>> heap;
heap.push({0,1});
while(heap.size()){
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if(st[ver]) continue;
st[ver] = true;
for(int i=h[ver];~i;i=ne[i]){
int j = e[i];
if(dist[j]>distance+w[i]){
dist[j] = distance + w[i];
heap.push({dist[j],j});
}
}
}
if(dist[n]==0x3f3f3f3f) return -1;
return dist[n];
}
三、Bellman-Ford
题意
存在负边权的图,边数不超过 k k k的最短路
代码
int n,m,k;
int dist[N];
int last[N];
struct Edge
{
int a,b,c;
}edges[M];
void bellman_ford()
{
memset(dist,0x3f,sizeof(dist));
dist[1] = 0;
for(int i=1;i<=k;i++){
memcpy(last,dist,sizeof(dist));
for(int j=0;j<m;j++){
auto e = edges[j];
dist[e.b] = min(dist[e.b], last[e.a] + e.c);
}
}
if(dist[n]>0x3f3f3f3f/2) puts("impossible");
else cout << dist[n] << endl;
}
四、spfa
题意1(最短路)
求带负边权的最短路
代码1
int spfa()
{
memset(dist,0x3f,sizeof(dist));
dist[1] = 0;
queue<int> que;
que.push(1);
st[1] = true;
while(que.size()){
int t = que.front();
que.pop();
st[t] = false;
for(int i=h[t];~i;i=ne[i]){
int j = e[i];
if(dist[j]>dist[t]+w[i]){
dist[j] = dist[t] + w[i];
if(!st[j]){
que.push(j);
st[j] = true;
}
}
}
}
return dist[n];
}
题意2(判负环)
判负环
代码2
bool spfa()
{
queue<int> que;
for(int i=1;i<=n;i++){
que.push(i);
st[i] = true;
}
while(que.size()){
int t = que.front();
que.pop();
st[t] = false;
for(int i=h[t];~i;i=ne[i]){
int j = e[i];
if(dist[j]>dist[t]+w[i]){
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if(cnt[j]>=n) return true;
if(!st[j]){
que.push(j);
st[j] = true;
}
}
}
}
return false;
}
五、Floyd
题意
多源汇最短路
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 210, inf = 0x3f3f3f3f;
int n,m,k;
int dist[N][N];
void floyd()
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);
}
int main()
{
cin >> n >> m >> k;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j) dist[i][j] = 0;
else dist[i][j] = inf;
}
while(m--){
int a,b,c;
cin >> a >> b >> c;
dist[a][b] = min(dist[a][b], c);
}
floyd();
while(k--){
int a,b;
cin >> a >> b;
int t = dist[a][b];
if(t>inf/2) puts("impossible");
else cout << t << endl;
}
return 0;
}