一.为什么要分库分表?
分库分表是为了支持高并发,数据量大两个问题的。
1.分表
单表数据量太大,会极大影响sql执行的性能,到了后面sql可能就跑的很慢了。
分表就是把一个表的数据放到多个表中,然后查询的时候就查一个表。比如按照用户id分表,将一个用户的数据就放在一个表中,然后操作的时候对一个用户就操作那个表就好了。每张表数据在200万以内。
分表主要解决数据量大的问题。
2.分库
分库就是一个库依经验而言,最多支撑到并发2000,一定要扩容了,而且一个健康的单库并发值最好保持在每秒1000左右,不要太大。那么可以将一个库的数据拆分到多个库中,访问的时候就访问一个库就好了。

二.分库分表中间件
1.Sharding-jdbc
当当开源的,属于 client 层方案,目前已经更名为 ShardingSphere(后文所提到的 Sharding-jdbc,等同于 ShardingSphere)。确实之前用的还比较多一些,因为 SQL 语法支持也比较多,没有太多限制,而且截至 2019.4,已经推出到了 4.0.0-RC1 版本,支持分库分表、读写分离、分布式 id 生成、柔性事务(最大努力送达型事务、TCC 事务)。而且确实之前使用的公司会比较多一些(这个在官网有登记使用的公司,可以看到从 2017 年一直到现在,是有不少公司在用的),目前社区也还一直在开发和维护,还算是比较活跃,个人认为算是一个现在也可以选择的方案。
2.Mycat
基于 Cobar 改造的,属于 proxy 层方案,支持的功能非常完善,而且目前应该是非常火的而且不断流行的数据库中间件,社区很活跃,也有一些公司开始在用了。但是确实相比于 Sharding jdbc 来说,年轻一些,经历的锤炼少一些。
优缺点:
Sharding-jdbc 这种 client 层方案的优点在于不用部署,运维成本低,不需要代理层的二次转发请求,性能很高,但是如果遇到升级啥的需要各个系统都重新升级版本再发布,各个系统都需要耦 合 Sharding-jdbc 的依赖;
Mycat 这种 proxy 层方案的缺点在于需要部署,自己运维一套中间件,运维成本高,但是好处在于对于各个项目是透明的,如果遇到升级之类的都是自己中间件那里搞就行了。
三.数据库如何进行垂直拆分或水平拆分?
1.水平拆分
把一张表的数据给弄到多个库的多个表中,但是每个库的表结构都一样,只不过每个库表放的数据是不同的,所有库表的数据加起来就是全部数据。水平拆分的意义,就是将数据均匀放更多的库里,然后用多个库来抗更高的并发,还有就是用多个库的存储量来进行扩容。
2.垂直拆分
把一个有很多字段的表拆分成多个表,或者多个库上去。每个库表的结构都不一样,每个库表都包含部分字段。一般来说,会将较少的访问频率很高的字段放到一个表里去,然后将较多的访问频率很低的字段放到另一个表里去。因为数据库是有缓存的,你访问频率高的行字段越少,就可以在缓存里缓存更多的行,性能就越好。
四.动态切换到分库分表
1.停机迁移方案
先给你说一个最 low 的方案,就是很简单,大家伙儿凌晨 12 点开始运维,网站或者 app 挂个公告,说 0 点到早上 6 点进行运维,无法访问。
接着到 0 点停机,系统停掉,没有流量写入了,此时老的单库单表数据库静止了。然后你之前得写好一个导数的一次性工具,此时直接跑起来,然后将单库单表的数据哗哗哗读出来,写到分库分表里面去。导数完了之后,就 ok 了,修改系统的数据库连接配置啥的,包括可能代码和 SQL 也许有修改,那你就用最新的代码,然后直接启动连到新的分库分表上去。
2.双写迁移方案
简单来说,就是在线上系统里面,之前所有写库的地方,增删改操作,除了对老库增删改,都加上对新库的增删改,这就是所谓的双写,同时写俩库,老库和新库。
然后系统部署之后,新库数据差太远,用之前说的导数工具,跑起来读老库数据写新库,写的时候要根据 gmt_modified 这类字段判断这条数据最后修改的时间,除非是读出来的数据在新库里没有,或者是比新库的数据新才会写。简单来说,就是不允许用老数据覆盖新数据。
导完一轮之后,有可能数据还是存在不一致,那么就程序自动做一轮校验,比对新老库每个表的每条数据,接着如果有不一样的,就针对那些不一样的,从老库读数据再次写。反复循环,直到两个库每个表的数据都完全一致为止。
接着当数据完全一致了,就ok了,基于仅仅使用分库分表的最新代码,重新部署一次,不就仅仅基于分库分表在操作了么,还没有几个小时的停机时间,很稳。所以现在基本玩儿数据迁移之类的,都是这么干的。
风里雨里,善知教育等你!!
QQ:1763481971
或加交流群