蚁群算法
今天雨下的不小,无事可干,来研究研究蚁群算法。
蚁群优化算法概述
蚁群优化算法(Ant Colony Optimization,ACO)起源于对简单蚂蚁社会系统的模拟,是对蚂蚁群落食物采集过程的模拟,是一种群智能算法。目前,蚂蚁算法因其较强的鲁棒性,并行性,分布式计算机制,易于实现等特点,已在组合优化、网络路由、函数优化、数据挖掘、机器人路径规划、无线传感器网络性能优化等领域得到广泛的应用。
蚁群算法的生物学背景
蚁群优化(ACO)算法其灵感来源于真实蚁群的觅食行为(foraging),也就是蚂蚁怎样找到食物源与自己的巢穴之间的最短路径。蚂蚁没有视力,它在蚁群与食物源之间建立起最短的路径,并且返回,其个体之间信息通信的媒介就是信息素。初始的时候,蚂蚁按照随机的方式在自己的巢穴周围找寻食物。一旦一只蚂蚁找到食物,它会估计食物的数量和质量并且带一些食物回巢穴。在返回巢穴期间,这只蚂蚁留在路径上的“信息素”(Pheromone)的数量与其所携带的食物的数量和质量有关。一只孤立的蚂蚁的基本移动是随机的,蚂蚁如果检测到路径上有前面蚂蚁遗留下的信息素,那么蚂蚁会选择信息素浓度高的路径行走,同时也用自己的信息素加强了所选择路径上的信息素浓度。这种集体行为表现的是一种叫做autocatalytic(自身催化)的行为,即越多的蚂蚁追寻一条信息素,这条信息素对后续的蚂蚁就越有吸引力。”信息素”作为蚁群前往食物所在地的标记也会逐渐挥发,如果2
只蚂蚁同时找到同一食物,又采取不同路线回到巢中,那么比较绕远的一条路上信息素的气味会比较淡,后续的蚂蚁在选择路径的时候会倾向于选择信息素浓度较高的路径。而这一过程就是蚂蚁之间通过信息素所进行的间接通信,即stigmergy。蚂蚁通过这种方式能够找到巢穴与食物源之间的最短路径。
蚁群算法解决TSP问题
在解决组合优化问题,如TSP 问题时,ACO 算法设计虚拟的"蚂蚁"将搜索不同路线,并留下会随时间逐渐消失的虚拟"信息素"。虚拟的"信息素"也会挥发,每只蚂蚁每次随机选择要走的路径,它们倾向于选择路径比较短的、信息素比较浓的路径。根据“信息素较浓的路线更近”的原则,即可选择出最佳路线。由于这个算法利用了正反馈机制,使得较短的路径能够有较大的机会得到选择,并且由于采用了概率算法,所以它能够不局限于局部最优解。
通常,ACO 算法通过两个迭代步骤解决优化问题:
(1) 用信息素模型构建候选解 即,在解空间中参数化概率分布;
(2) 用候选解来修正信息素的值 其前提是朝着获得高质量解的方向进行采样。
每一只蚂蚁就是一个主体(agent),它具有以下特性:其所选择城市的概率是城市间距离与连线上遗留信息量的函数;不允许蚂蚁向已经访问过的城市转移,直到整个旅行结束,该过程由禁忌表控制;当其完成一次旅行之后,蚂蚁在经过的边(i, j)上放置信息素。
令 ζ (t) ij τ 为连线(i, j)上信息素的浓度。信息素浓度根据下式更新:

k指蚂蚁的序号
#pragma once
#include <iostream>
#include <math.h>
#include <time.h>
const double ALPHA=1.0; //启发因子,信息素的重要程度
const double BETA=2.0; //期望因子,城市间距离的重要程度
const double ROU=0.5; //信息素残留参数
const int N_ANT_COUNT=34; //蚂蚁数量
const int N_IT_COUNT=1000; //迭代次数
const int N_CITY_COUNT=51; //城市数量
const double DBQ=100.0; //总的信息素
const double DB_MAX=10e9; //一个标志数,10的9次方
double g_Trial[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间信息素,就是环境信息素
double g_Distance[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间距离
//eil51.tsp城市坐标数据
double x_Ary[N_CITY_COUNT]=
{
37,49,52,20,40,21,17,31,52,51,
42,31,5,12,36,52,27,17,13,57,
62,42,16,8,7,27,30,43,58,58,
37,38,46,61,62,63,32,45,59,5,
10,21,5,30,39,32,25,25,48,56,
30
};
double y_Ary[N_CITY_COUNT]=
{
52,49,64,26,30,47,63,62,33,21,
41,32,25,42,16,41,23,33,13,58,
42,57,57,52,38,68,48,67,48,27,
69,46,10,33,63,69,22,35,15,6,
17,10,64,15,10,39,32,55,28,37,
40
};
//返回指定范围内的随机整数
int rnd(int nLow,int nUpper)
{
return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1);
}
//返回指定范围内的随机浮点数
double rnd(double dbLow,double dbUpper)
{
double dbTemp=rand()/((double)RAND_MAX+1.0);
return dbLow+dbTemp*(dbUpper-dbLow);
}
//返回浮点数四舍五入取整后的浮点数
double ROUND(double dbA)
{
return (double)((int)(dbA+0.5));
}
//定义蚂蚁类
class CAnt
{
public:
CAnt(void);
~CAnt(void);
public:
int m_nPath[N_CITY_COUNT]; //蚂蚁走的路径
double m_dbPathLength; //蚂蚁走过的路径长度
int m_nAllowedCity[N_CITY_COUNT]; //没去过的城市
int m_nCurCityNo; //当前所在城市编号
int m_nMovedCityCount; //已经去过的城市数量
public:
int ChooseNextCity(); //选择下一个城市
void Init(); //初始化
void Move(); //蚂蚁在城市间移动
void Search(); //搜索路径
void CalPathLength(); //计算蚂蚁走过的路径长度
};
//构造函数
CAnt::CAnt(void)
{
}
//析构函数
CAnt::~CAnt(void)
{
}
//初始化函数,蚂蚁搜索前调用
void CAnt::Init()
{
for (int i=0;i<N_CITY_COUNT;i++)
{
m_nAllowedCity[i]=1; //设置全部城市为没有去过
m_nPath[i]=0; //蚂蚁走的路径全部设置为0
}
//蚂蚁走过的路径长度设置为0
m_dbPathLength=0.0;
//随机选择一个出发城市
m_nCurCityNo=rnd(0,N_CITY_COUNT);
//把出发城市保存入路径数组中
m_nPath[0]=m_nCurCityNo;
//标识出发城市为已经去过了
m_nAllowedCity[m_nCurCityNo]=0;
//已经去过的城市数量设置为1
m_nMovedCityCount=1;
}
//选择下一个城市
//返回值 为城市编号
int CAnt::ChooseNextCity()
{
int nSelectedCity=-1; //返回结果,先暂时把其设置为-1
//==============================================================================
//计算当前城市和没去过的城市之间的信息素总和
double dbTotal=0.0;
double prob[N_CITY_COUNT]; //保存各个城市被选中的概率
for (int i=0;i<N_CITY_COUNT;i++)
{
if (m_nAllowedCity[i] == 1) //城市没去过
{
prob[i]=pow(g_Trial[m_nCurCityNo][i],ALPHA)*pow(1.0/g_Distance[m_nCurCityNo][i],BETA); //该城市和当前城市间的信息素
dbTotal=dbTotal+prob[i]; //累加信息素,得到总和
}
else //如果城市去过了,则其被选中的概率值为0
{
prob[i]=0.0;
}
}
//==============================================================================
//进行轮盘选择
double dbTemp=0.0;
if (dbTotal > 0.0) //总的信息素值大于0
{
dbTemp=rnd(0.0,dbTotal); //取一个随机数
for (int i=0;i<N_CITY_COUNT;i++)
{
if (m_nAllowedCity[i] == 1) //城市没去过
{
dbTemp=dbTemp-prob[i]; //这个操作相当于转动轮盘,如果对轮盘选择不熟悉,仔细考虑一下
if (dbTemp < 0.0) //轮盘停止转动,记下城市编号,直接跳出循环
{
nSelectedCity=i;
break;
}
}
}
}
//==============================================================================
//如果城市间的信息素非常小 ( 小到比double能够表示的最小的数字还要小 )
//那么由于浮点运算的误差原因,上面计算的概率总和可能为0
//会出现经过上述操作,没有城市被选择出来
//出现这种情况,就把第一个没去过的城市作为返回结果
//题外话:刚开始看的时候,下面这段代码困惑了我很长时间,想不通为何要有这段代码,后来才搞清楚。
if (nSelectedCity == -1)
{
for (int i=0;i<N_CITY_COUNT;i++)
{
if (m_nAllowedCity[i] == 1) //城市没去过
{
nSelectedCity=i;
break;
}
}
}
//==============================================================================
//返回结果,就是城市的编号
return nSelectedCity;
}
//蚂蚁在城市间移动
void CAnt::Move()
{
int nCityNo=ChooseNextCity(); //选择下一个城市
m_nPath[m_nMovedCityCount]=nCityNo; //保存蚂蚁走的路径
m_nAllowedCity[nCityNo]=0;//把这个城市设置成已经去过了
m_nCurCityNo=nCityNo; //改变当前所在城市为选择的城市
m_nMovedCityCount++; //已经去过的城市数量加1
}
//蚂蚁进行搜索一次
void CAnt::Search()
{
Init(); //蚂蚁搜索前,先初始化
//如果蚂蚁去过的城市数量小于城市数量,就继续移动
while (m_nMovedCityCount < N_CITY_COUNT)
{
Move();
}
//完成搜索后计算走过的路径长度
CalPathLength();
}
//计算蚂蚁走过的路径长度
void CAnt::CalPathLength()
{
m_dbPathLength=0.0; //先把路径长度置0
int m=0;
int n=0;
for (int i=1;i<N_CITY_COUNT;i++)
{
m=m_nPath[i];
n=m_nPath[i-1];
m_dbPathLength=m_dbPathLength+g_Distance[m][n];
}
//加上从最后城市返回出发城市的距离
n=m_nPath[0];
m_dbPathLength=m_dbPathLength+g_Distance[m][n];
}
//tsp类
class CTsp
{
public:
CTsp(void);
~CTsp(void);
public:
CAnt m_cAntAry[N_ANT_COUNT]; //蚂蚁数组
CAnt m_cBestAnt; //定义一个蚂蚁变量,用来保存搜索过程中的最优结果
//该蚂蚁不参与搜索,只是用来保存最优结果
public:
//初始化数据
void InitData();
//开始搜索
void Search();
//更新环境信息素
void UpdateTrial();
};
//构造函数
CTsp::CTsp(void)
{
}
CTsp::~CTsp(void)
{
}
//初始化数据
void CTsp::InitData()
{
//先把最优蚂蚁的路径长度设置成一个很大的值
m_cBestAnt.m_dbPathLength=DB_MAX;
//计算两两城市间距离
double dbTemp=0.0;
for (int i=0;i<N_CITY_COUNT;i++)
{
for (int j=0;j<N_CITY_COUNT;j++)
{
dbTemp=(x_Ary[i]-x_Ary[j])*(x_Ary[i]-x_Ary[j])+(y_Ary[i]-y_Ary[j])*(y_Ary[i]-y_Ary[j]);
dbTemp=pow(dbTemp,0.5);
g_Distance[i][j]=ROUND(dbTemp);
}
}
//初始化环境信息素,先把城市间的信息素设置成一样
//这里设置成1.0,设置成多少对结果影响不是太大,对算法收敛速度有些影响
for (int i=0;i<N_CITY_COUNT;i++)
{
for (int j=0;j<N_CITY_COUNT;j++)
{
g_Trial[i][j]=1.0;
}
}
}
//更新环境信息素
void CTsp::UpdateTrial()
{
//临时数组,保存各只蚂蚁在两两城市间新留下的信息素
double dbTempAry[N_CITY_COUNT][N_CITY_COUNT];
memset(dbTempAry,0,sizeof(dbTempAry)); //先全部设置为0
//计算新增加的信息素,保存到临时数组里
int m=0;
int n=0;
for (int i=0;i<N_ANT_COUNT;i++) //计算每只蚂蚁留下的信息素
{
for (int j=1;j<N_CITY_COUNT;j++)
{
m=m_cAntAry[i].m_nPath[j];
n=m_cAntAry[i].m_nPath[j-1];
dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength;
dbTempAry[m][n]=dbTempAry[n][m];
}
//最后城市和开始城市之间的信息素
n=m_cAntAry[i].m_nPath[0];
dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength;
dbTempAry[m][n]=dbTempAry[n][m];
}
//==================================================================
//更新环境信息素
for (int i=0;i<N_CITY_COUNT;i++)
{
for (int j=0;j<N_CITY_COUNT;j++)
{
g_Trial[i][j]=g_Trial[i][j]*ROU+dbTempAry[i][j]; //最新的环境信息素 = 留存的信息素 + 新留下的信息素
}
}
}
void CTsp::Search()
{
char cBuf[256]; //打印信息用
//在迭代次数内进行循环
for (int i=0;i<N_IT_COUNT;i++)
{
//每只蚂蚁搜索一遍
for (int j=0;j<N_ANT_COUNT;j++)
{
m_cAntAry[j].Search();
}
//保存最佳结果
for (int j=0;j<N_ANT_COUNT;j++)
{
if (m_cAntAry[j].m_dbPathLength < m_cBestAnt.m_dbPathLength)
{
m_cBestAnt=m_cAntAry[j];
}
}
//更新环境信息素
UpdateTrial();
//输出目前为止找到的最优路径的长度
sprintf(cBuf,"\n[%d] %.0f",i+1,m_cBestAnt.m_dbPathLength);
printf(cBuf);
}
}
版权声明: