#头条创作挑战赛#
kafka消费者组
消费者组,即 Consumer Group,应该算是 Kafka 比较有亮点的设计了。那么何谓 Consumer Group 呢?用一句话概括就是:Consumer Group 是 Kafka 提供的可扩展且具有容错性的消费者机制。既然是一个组,那么组内必然可以有多个消费者或消费者实例(Consumer Instance),它们共享一个公共的 ID,这个 ID 被称为 Group ID。组内的所有消费者协调在一起来消费订阅主题(Subscribed Topics)的所有分区(Partition)。当然,每个分区只能由同一个消费者组内的一个 Consumer 实例来消费。个人认为,理解 Consumer Group 记住下面这三个特性就好了。
- Consumer Group 下可以有一个或多个 Consumer 实例。这里的实例可以是一个单独的进程,也可以是同一进程下的线程。在实际场景中,使用进程更为常见一些。
- Group ID 是一个字符串,在一个 Kafka 集群中,它标识唯一的一个 Consumer Group。
- Consumer Group 下所有实例订阅的主题的单个分区,只能分配给组内的某个 Consumer 实例消费。这个分区当然也可以被其他的 Group 消费。
大家都知道两种消息引擎模型吧?它们分别是点对点模型和发布 / 订阅模型,前者也称为消费队列。当然,你要注意区分很多架构文章中涉及的消息队列与这里的消息队列。国内很多文章都习惯把消息中间件这类框架统称为消息队列,我在这里不评价这种提法是否准确,只是想提醒你注意这里所说的消息队列,特指经典的消息引擎模型。
好了,传统的消息引擎模型就是这两大类,它们各有优劣。我们来简单回顾一下。传统的消息队列模型的缺陷在于消息一旦被消费,就会从队列中被删除,而且只能被下游的一个 Consumer 消费。严格来说,这一点不算是缺陷,只能算是它的一个特性。但很显然,这种模型的伸缩性(scalability)很差,因为下游的多个 Consumer 都要“抢”这个共享消息队列的消息。发布 / 订阅模型倒是允许消息被多个 Consumer 消费,但它的问题也是伸缩性不高,因为每个订阅者都必须要订阅主题的所有分区。这种全量订阅的方式既不灵活,也会影响消息的真实投递效果。
如果有这么一种机制,既可以避开这两种模型的缺陷,又兼具它们的优点,那就太好了。幸运的是,Kafka 的 Consumer Group 就是这样的机制。当 Consumer Group 订阅了多个主题后,组内的每个实例不要求一定要订阅主题的所有分区,它只会消费部分分区中的消息。
Consumer Group 之间彼此独立,互不影响,它们能够订阅相同的一组主题而互不干涉。再加上 Broker 端的消息留存机制,Kafka 的 Consumer Group 完美地规避了上面提到的伸缩性差的问题。可以这么说,Kafka 仅仅使用 Consumer Group 这一种机制,却同时实现了传统消息引擎系统的两大模型:如果所有实例都属于同一个 Group,那么它实现的就是消息队列模型;如果所有实例分别属于不同的 Group,那么它实现的就是发布 / 订阅模型。
在了解了 Consumer Group 以及它的设计亮点之后,你可能会有这样的疑问:在实际使用场景中,我怎么知道一个 Group 下该有多少个 Consumer 实例呢?理想情况下,Consumer 实例的数量应该等于该 Group 订阅主题的分区总数。
举个简单的例子,假设一个 Consumer Group 订阅了 3 个主题,分别是 A、B、C,它们的分区数依次是 1、2、3,那么通常情况下,为该 Group 设置 6 个 Consumer 实例是比较理想的情形,因为它能最大限度地实现高伸缩性。
你可能会问,我能设置小于或大于 6 的实例吗?当然可以!如果你有 3 个实例,那么平均下来每个实例大约消费 2 个分区(6 / 3 = 2);如果你设置了 8 个实例,那么很遗憾,有 2 个实例(8 – 6 = 2)将不会被分配任何分区,它们永远处于空闲状态。因此,在实际使用过程中一般不推荐设置大于总分区数的 Consumer 实例。设置多余的实例只会浪费资源,而没有任何好处。
好了,说完了 Consumer Group 的设计特性,我们来讨论一个问题:针对 Consumer Group,Kafka 是怎么管理位移的呢?你还记得吧,消费者在消费的过程中需要记录自己消费了多少数据,即消费位置信息。在 Kafka 中,这个位置信息有个专门的术语:位移(Offset)。
看上去该 Offset 就是一个数值而已,其实对于 Consumer Group 而言,它是一组 KV 对,Key 是分区,V 对应 Consumer 消费该分区的最新位移。如果用 Java 来表示的话,你大致可以认为是这样的数据结构,即 Map<TopicPartition, Long>,其中 TopicPartition 表示一个分区,而 Long 表示位移的类型。当然,我必须承认 Kafka 源码中并不是这样简单的数据结构,而是要比这个复杂得多,不过这并不会妨碍我们对 Group 位移的理解。
老版本的 Consumer 也有消费者组的概念,它和我们目前讨论的 Consumer Group 在使用感上并没有太多的不同,只是它管理位移的方式和新版本是不一样的。
老版本的 Consumer Group 把位移保存在 ZooKeeper 中。Apache ZooKeeper 是一个分布式的协调服务框架,Kafka 重度依赖它实现各种各样的协调管理。将位移保存在 ZooKeeper 外部系统的做法,最显而易见的好处就是减少了 Kafka Broker 端的状态保存开销。现在比较流行的提法是将服务器节点做成无状态的,这样可以自由地扩缩容,实现超强的伸缩性。Kafka 最开始也是基于这样的考虑,才将 Consumer Group 位移保存在独立于 Kafka 集群之外的框架中。
不过,慢慢地人们发现了一个问题,即 ZooKeeper 这类元框架其实并不适合进行频繁的写更新,而 Consumer Group 的位移更新却是一个非常频繁的操作。这种大吞吐量的写操作会极大地拖慢 ZooKeeper 集群的性能,因此 Kafka 社区渐渐有了这样的共识:将 Consumer 位移保存在 ZooKeeper 中是不合适的做法。
于是,在新版本的 Consumer Group 中,Kafka 社区重新设计了 Consumer Group 的位移管理方式,采用了将位移保存在 Kafka 内部主题的方法。这个内部主题就是让人既爱又恨的 __consumer_offsets。我会在专栏后面的内容中专门介绍这个神秘的主题。不过,现在你需要记住新版本的 Consumer Group 将位移保存在 Broker 端的内部主题中。
何为Rebalance
我们来说说 Consumer Group 端大名鼎鼎的重平衡,也就是所谓的 Rebalance 过程。我形容其为“大名鼎鼎”,从某种程度上来说其实也是“臭名昭著”,因为有关它的 bug 真可谓是此起彼伏,从未间断。这里我先卖个关子,后面我会解释它“遭人恨”的地方。我们先来了解一下什么是 Rebalance。
Rebalance 本质上是一种协议,规定了一个 Consumer Group 下的所有 Consumer 如何达成一致,来分配订阅 Topic 的每个分区。比如某个 Group 下有 20 个 Consumer 实例,它订阅了一个具有 100 个分区的 Topic。正常情况下,Kafka 平均会为每个 Consumer 分配 5 个分区。这个分配的过程就叫 Rebalance。
那么 Consumer Group 何时进行 Rebalance 呢?Rebalance 的触发条件有 3 个。
- 组成员数发生变更。比如有新的 Consumer 实例加入组或者离开组,抑或是有 Consumer 实例崩溃被“踢出”组。
- 订阅主题数发生变更。Consumer Group 可以使用正则表达式的方式订阅主题,比如 consumer.subscribe(Pattern.compile(“t.*c”)) 就表明该 Group 订阅所有以字母 t 开头、字母 c 结尾的主题。在 Consumer Group 的运行过程中,你新创建了一个满足这样条件的主题,那么该 Group 就会发生 Rebalance。
- 订阅主题的分区数发生变更。Kafka 当前只能允许增加一个主题的分区数。当分区数增加时,就会触发订阅该主题的所有 Group 开启 Rebalance。
Rebalance 发生时,Group 下所有的 Consumer 实例都会协调在一起共同参与。你可能会问,每个 Consumer 实例怎么知道应该消费订阅主题的哪些分区呢?这就需要分配策略的协助了。
当前 Kafka 默认提供了 3 种分配策略,每种策略都有一定的优势和劣势,我们今天就不展开讨论了,你只需要记住社区会不断地完善这些策略,保证提供最公平的分配策略,即每个 Consumer 实例都能够得到较为平均的分区数。比如一个 Group 内有 10 个 Consumer 实例,要消费 100 个分区,理想的分配策略自然是每个实例平均得到 10 个分区。这就叫公平的分配策略。如果出现了严重的分配倾斜,势必会出现这种情况:有的实例会“闲死”,而有的实例则会“忙死”。
我们举个简单的例子来说明一下 Consumer Group 发生 Rebalance 的过程。假设目前某个 Consumer Group 下有两个 Consumer,比如 A 和 B,当第三个成员 C 加入时,Kafka 会触发 Rebalance,并根据默认的分配策略重新为 A、B 和 C 分配分区,如下图所示:
显然,Rebalance 之后的分配依然是公平的,即每个 Consumer 实例都获得了 3 个分区的消费权。这是我们希望出现的情形。
讲完了 Rebalance,现在我来说说它“遭人恨”的地方。
首先,Rebalance 过程对 Consumer Group 消费过程有极大的影响。如果你了解 JVM 的垃圾回收机制,你一定听过万物静止的收集方式,即著名的 stop the world,简称 STW。在 STW 期间,所有应用线程都会停止工作,表现为整个应用程序僵在那边一动不动。Rebalance 过程也和这个类似,在 Rebalance 过程中,所有 Consumer 实例都会停止消费,等待 Rebalance 完成。这是 Rebalance 为人诟病的一个方面。
其次,目前 Rebalance 的设计是所有 Consumer 实例共同参与,全部重新分配所有分区。其实更高效的做法是尽量减少分配方案的变动。例如实例 A 之前负责消费分区 1、2、3,那么 Rebalance 之后,如果可能的话,最好还是让实例 A 继续消费分区 1、2、3,而不是被重新分配其他的分区。这样的话,实例 A 连接这些分区所在 Broker 的 TCP 连接就可以继续用,不用重新创建连接其他 Broker 的 Socket 资源。
最后,Rebalance 实在是太慢了。曾经,有个国外用户的 Group 内有几百个 Consumer 实例,成功 Rebalance 一次要几个小时!这完全是不能忍受的。最悲剧的是,目前社区对此无能为力,至少现在还没有特别好的解决方案。所谓“本事大不如不摊上”,也许最好的解决方案就是避免 Rebalance 的发生吧。
消费者组的重平衡流程,它的作用是让组内所有的消费者实例就消费哪些主题分区达成一致。重平衡需要借助 Kafka Broker 端的 Coordinator 组件,在 Coordinator 的帮助下完成整个消费者组的分区重分配。今天我们就来详细说说这个流程。
Rebalance触发与通知
我们先来说说重平衡的 3 个触发条件:
- 组成员数量发生变化。
- 订阅主题数量发生变化。
- 订阅主题的分区数发生变化。
就我个人的经验来看,在实际生产环境中,因命中第 1 个条件而引发的重平衡是最常见的。另外,消费者组中的消费者实例依次启动也属于第 1 种情况,也就是说,每次消费者组启动时,必然会触发重平衡过程。
今天,我真正想引出的是另一个话题:重平衡过程是如何通知到其他消费者实例的?答案就是,靠消费者端的心跳线程(Heartbeat Thread)。
Kafka Java 消费者需要定期地发送心跳请求(Heartbeat Request)到 Broker 端的协调者,以表明它还存活着。在 Kafka 0.10.1.0 版本之前,发送心跳请求是在消费者主线程完成的,也就是你写代码调用 KafkaConsumer.poll 方法的那个线程。
这样做有诸多弊病,最大的问题在于,消息处理逻辑也是在这个线程中完成的。因此,一旦消息处理消耗了过长的时间,心跳请求将无法及时发到协调者那里,导致协调者“错误地”认为该消费者已“死”。自 0.10.1.0 版本开始,社区引入了一个单独的心跳线程来专门执行心跳请求发送,避免了这个问题。
但这和重平衡又有什么关系呢?其实,重平衡的通知机制正是通过心跳线程来完成的。当协调者决定开启新一轮重平衡后,它会将“REBALANCE_IN_PROGRESS”封装进心跳请求的响应中,发还给消费者实例。当消费者实例发现心跳响应中包含了“REBALANCE_IN_PROGRESS”,就能立马知道重平衡又开始了,这就是重平衡的通知机制。
对了,很多人还搞不清楚消费者端参数 heartbeat.interval.ms 的真实用途,我来解释一下。从字面上看,它就是设置了心跳的间隔时间,但这个参数的真正作用是控制重平衡通知的频率。如果你想要消费者实例更迅速地得到通知,那么就可以给这个参数设置一个非常小的值,这样消费者就能更快地感知到重平衡已经开启了。
消费者组状态机
重平衡一旦开启,Broker 端的协调者组件就要开始忙了,主要涉及到控制消费者组的状态流转。当前,Kafka 设计了一套消费者组状态机(State Machine),来帮助协调者完成整个重平衡流程。严格来说,这套状态机属于非常底层的设计,Kafka 官网上压根就没有提到过,但你最好还是了解一下,因为它能够帮助你搞懂消费者组的设计原理,比如消费者组的过期位移(Expired Offsets)删除等。
目前,Kafka 为消费者组定义了 5 种状态,它们分别是:Empty、Dead、PreparingRebalance、CompletingRebalance 和 Stable。那么,这 5 种状态的含义是什么呢?我们一起来看看下面这张表格。
了解了这些状态的含义之后,我们来看一张图片,它展示了状态机的各个状态流转。
我来解释一下消费者组启动时的状态流转过程。一个消费者组最开始是 Empty 状态,当重平衡过程开启后,它会被置于 PreparingRebalance 状态等待成员加入,之后变更到 CompletingRebalance 状态等待分配方案,最后流转到 Stable 状态完成重平衡。
当有新成员加入或已有成员退出时,消费者组的状态从 Stable 直接跳到 PreparingRebalance 状态,此时,所有现存成员就必须重新申请加入组。当所有成员都退出组后,消费者组状态变更为 Empty。Kafka 定期自动删除过期位移的条件就是,组要处于 Empty 状态。因此,如果你的消费者组停掉了很长时间(超过 7 天),那么 Kafka 很可能就把该组的位移数据删除了。我相信,你在 Kafka 的日志中一定经常看到下面这个输出:
Removed ✘✘✘ expired offsets in ✘✘✘ milliseconds.
这就是 Kafka 在尝试定期删除过期位移。现在你知道了,只有 Empty 状态下的组,才会执行过期位移删除的操作。
消费者端重平衡流程
有了上面的内容作铺垫,我们就可以开始介绍重平衡流程了。重平衡的完整流程需要消费者端和协调者组件共同参与才能完成。我们先从消费者的视角来审视一下重平衡的流程。
在消费者端,重平衡分为两个步骤:分别是加入组和等待领导者消费者(Leader Consumer)分配方案。这两个步骤分别对应两类特定的请求:JoinGroup 请求和 SyncGroup 请求。
当组内成员加入组时,它会向协调者发送 JoinGroup 请求。在该请求中,每个成员都要将自己订阅的主题上报,这样协调者就能收集到所有成员的订阅信息。一旦收集了全部成员的 JoinGroup 请求后,协调者会从这些成员中选择一个担任这个消费者组的领导者。
通常情况下,第一个发送 JoinGroup 请求的成员自动成为领导者。你一定要注意区分这里的领导者和之前我们介绍的领导者副本,它们不是一个概念。这里的领导者是具体的消费者实例,它既不是副本,也不是协调者。领导者消费者的任务是收集所有成员的订阅信息,然后根据这些信息,制定具体的分区消费分配方案。
选出领导者之后,协调者会把消费者组订阅信息封装进 JoinGroup 请求的响应体中,然后发给领导者,由领导者统一做出分配方案后,进入到下一步:发送 SyncGroup 请求。
在这一步中,领导者向协调者发送 SyncGroup 请求,将刚刚做出的分配方案发给协调者。值得注意的是,其他成员也会向协调者发送 SyncGroup 请求,只不过请求体中并没有实际的内容。这一步的主要目的是让协调者接收分配方案,然后统一以 SyncGroup 响应的方式分发给所有成员,这样组内所有成员就都知道自己该消费哪些分区了。
接下来,我用一张图来形象地说明一下 JoinGroup 请求的处理过程。
就像前面说的,JoinGroup 请求的主要作用是将组成员订阅信息发送给领导者消费者,待领导者制定好分配方案后,重平衡流程进入到 SyncGroup 请求阶段。
下面这张图描述的是 SyncGroup 请求的处理流程。
SyncGroup 请求的主要目的,就是让协调者把领导者制定的分配方案下发给各个组内成员。当所有成员都成功接收到分配方案后,消费者组进入到 Stable 状态,即开始正常的消费工作。
讲完这里,消费者端的重平衡流程我已经介绍完了。接下来,我们从协调者端来看一下重平衡是怎么执行的。
Broker 端重平衡场景剖析
要剖析协调者端处理重平衡的全流程,我们必须要分几个场景来讨论。这几个场景分别是新成员加入组、组成员主动离组、组成员崩溃离组、组成员提交位移。接下来,我们一个一个来讨论。
场景一:新成员入组。
新成员入组是指组处于 Stable 状态后,有新成员加入。如果是全新启动一个消费者组,Kafka 是有一些自己的小优化的,流程上会有些许的不同。我们这里讨论的是,组稳定了之后有新成员加入的情形。
当协调者收到新的 JoinGroup 请求后,它会通过心跳请求响应的方式通知组内现有的所有成员,强制它们开启新一轮的重平衡。具体的过程和之前的客户端重平衡流程是一样的。现在,我用一张时序图来说明协调者一端是如何处理新成员入组的。
场景二:组成员主动离组。
何谓主动离组?就是指消费者实例所在线程或进程调用 close() 方法主动通知协调者它要退出。这个场景就涉及到了第三类请求:LeaveGroup 请求。协调者收到 LeaveGroup 请求后,依然会以心跳响应的方式通知其他成员,因此我就不再赘述了,还是直接用一张图来说明。
场景三:组成员崩溃离组。
崩溃离组是指消费者实例出现严重故障,突然宕机导致的离组。它和主动离组是有区别的,因为后者是主动发起的离组,协调者能马上感知并处理。但崩溃离组是被动的,协调者通常需要等待一段时间才能感知到,这段时间一般是由消费者端参数 session.timeout.ms 控制的。也就是说,Kafka 一般不会超过 session.timeout.ms 就能感知到这个崩溃。当然,后面处理崩溃离组的流程与之前是一样的,我们来看看下面这张图。
场景四:重平衡时协调者对组内成员提交位移的处理。
正常情况下,每个组内成员都会定期汇报位移给协调者。当重平衡开启时,协调者会给予成员一段缓冲时间,要求每个成员必须在这段时间内快速地上报自己的位移信息,然后再开启正常的 JoinGroup/SyncGroup 请求发送。还是老办法,我们使用一张图来说明。
小结
好了,消费者组重平衡流程我已经全部讲完了。虽然全程我都是拿两个成员来举例子,但你可以很容易地扩展到多个成员的消费者组,毕竟它们的原理是相同的。我希望你能多看几遍今天的内容,彻底掌握 Kafka 的消费者重平衡流程。