给定一个数组arr(无序),其中每个元素值可为正数、负数和0,再给定一个正数k。求arr中所有连续子数组元素累加和为k的最长子数组长度。【难度:高】
示例:
输入: [2,1,-3,4,-1,2,-1,-2,4, -2,2,-2], k = 2
输出: 11
解释: 和为 2的最长连续子数组 [1,-3,4,-1,2,-1,-2,4,-2,2,-2] 。
result = 0
for i in range(len(arr)):
s = 0
for j in range(i, len(arr)):
s += arr[j]
if s == k:
result = max(result, j-i+1)
return result
prefix_sum = [0]*len(arr)
prefix_sum[0] = arr[0]
for i in range(1, len(arr):
prefix_sum[i] = arr[i]+prefix_sum[i-1]
result = 0
for i in range(len(arr)):
for j in range(i+1, len(arr)):
if prefix_sum[j] - prefix_sum[i] == k:
result = max(result, j-i+1)
return result
sum(arr[i:j+1]) == sum(arr[0:j+1])-sum(arr[0:i])
2 2
| |
1 3
| |
-3 0
| |
4 4
| |
... ...
| |
-2 ?
使用前缀和+hash解决,如果使用暴力解法时间复杂度是O(N^2),使用前缀和+hash的复杂度为O(N),空间复杂度为O(N),参考代码:
def get_max_length(arr, k):
if not arr:
return 0
prefix_sum = {0: -1}
result, sum = 0, 0
for i in range(len(arr)):
sum += arr[i]
path_sum = sum - k
if path_sum in prefix_sum:
result = max(result, i-prefix_sum[path_sum])
if sum not in prefix_sum:
prefix_sum[sum] = i
return result