天天看点

Predix中模型设计

介绍了predix的模型设计

GE的Predix使用了图形数据库作为Asset存储,用以解决传统RDBMS系统中扩展性差,不支持行的动态定义问题。

对于实体,或者Asset来说,由如下几个方面表述:

  • ID: Ties everythings happens to asset together
  • Structure:How the Asset data is stored (RDBMS, etc)
  • Repressentation:How the Asset data is logically expressed(JSON, XML, etc)

GE认为大多数项目失败在于它们将这个概念融合起来了,而GE则将其清晰的分割。

  • ID:Globally unique identifier
  • Structure:Graph database
  • Repressentation:JSON

通过将Asset使用图形数据库建模和存储,解决了如下问题:

  • Overcome mathematical scale problems
  • Queries and operations as path expressions

传统数据库在关系处理能力上大大弱与图形数据库。

Predix也有类型和分类的概念。

如:

Classification: 来源于 类型理论,将Asset进行分类,  "is a"

Groups and tags: 来源于 集合理论,将Asset进行分组"is a member of"

Catalog: 自定义组织规则并且通过catalog分享

Knowledgy Graph :

在IOT领域内,资产(实体)是不断增长和变化的,传统的asset建模使用预先定义好的schema,由此导致结构和关系不能扩展并很难响应变化和需求。knowledge graph在IOT领域内得到了很好的应用。Knowledge graph不需要预先定义的sehema和预先设计。可以通过当前的理解进行建模,并提供面向内容的视角。

找出电力缺乏的资产

找出在某一地理范围内的资产

找出由最优供应商提供部件的资产

总结:

Predix提供了IOT领域建模的另外一种思路,与我们现有的只使用图形数据库保存关系不同,Predix走的更远,其不进行预先的schema定义,而是通过knowledge graph层进行业务含义上的抽象。因此其对于模型的变化和响应具有最大的适应性。

另外,classification, groups and tags 以及catalog应该是定义在关系数据库中的。

也即predix是关系型数据库与图形数据库的结合,但将Asset下放至图形数据库中保存,从而提供了更好的可扩展能力。

Predix中模型设计
Predix中模型设计
Predix中模型设计