import cv2
import numpy as np
#图像显示
def cv_show(imgname,img):
cv2.imshow(imgname,img)
cv2.waitKey(0)
cv2.destroyAllWindows()
#排序坐标函数
def order_pts(pts):
rect=np.zeros((4,2),dtype='float32')
s = np.sum(pts,axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
n = np.diff(pts,axis=1)
rect[1] = pts[np.argmin(n)]
rect[3] = pts[np.argmax(n)]
return rect
#透视变换
def four_pts_change(img,pts):
points = order_pts(pts)
(tl,tr,bl,br) = points
widthA = np.sqrt(((tr[1]-tl[1])**2)+((tr[0]-tl[0])**2))
widthB = np.sqrt(((br[1] - bl[1]) ** 2) + ((br[0] - bl[0]) ** 2))
width = max(int(widthA),int(widthB))
lengthA = np.sqrt(((tr[1]-br[1])**2)+((tr[0]-br[0])**2))
lengthB = np.sqrt(((tl[1] - bl[1]) ** 2) + ((tl[0] - bl[0]) ** 2))
length = max(int(lengthA),int(lengthB))
#输出图坐标
dst = np.array([
(0,0),
(width-1,0),
(width-1,length-1),
(0,length)
],dtype='float32')
M = cv2.getPerspectiveTransform(points,dst)
wraped = cv2.warpPerspective(img,M,(width,length))
return wraped
#正确答案
ANSWER_KEY={0:1,1:4,2:0,3:3,4:1}
# ANSWER_KEY = {0:1,1:3,2:0,3:4,4:1}
img = cv2.imread('./textcard.png')
cv_show('img',img)
orig = img.copy()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#高斯模糊
gaussian = cv2.GaussianBlur(gray,(3,3),0)
cv_show('gaussian',gaussian)
#边缘检测
canny = cv2.Canny(gaussian,70,150)
cv_show('canny',canny)
OpenCV实战之文档扫描判卷
OpenCV实战之文档扫描判卷
OpenCV实战之文档扫描判卷 #轮廓检测
cnts = cv2.findContours(canny,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[0]
cnts = sorted(cnts,key=cv2.contourArea,reverse=True)
# cv2.drawContours(orig,cnts,-1,(149,32,190),2)
# cv_show('orig',orig)
for i in cnts:
perix = cv2.arcLength(i,True)
approx = cv2.approxPolyDP(i,0.01*perix,True)
if len(approx)==4:
screen = approx
break
cv2.drawContours(orig,[screen],-1,(149,32,190),2)
# cv_show('orig',orig)
#透视变换
wraped = four_pts_change(img,screen.reshape(4,2))
cv_show('wraped',wraped)
wraped_gray = cv2.cvtColor(wraped,cv2.COLOR_BGR2GRAY)
#阈值处理
thresh = cv2.threshold(wraped_gray,0,255,cv2.THRESH_BINARY_INV|cv2.THRESH_OTSU)[1]
cv_show('thresh',thresh)
#检测轮廓
thresh_cnts=thresh.copy()
cnts1 = cv2.findContours(thresh_cnts,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[0]
#白色填充轮廓
cv2.drawContours(thresh_cnts,cnts1,-1,(0,0,0),3)
cv_show('WRAPED',thresh_cnts)
OpenCV实战之文档扫描判卷
OpenCV实战之文档扫描判卷
OpenCV实战之文档扫描判卷 #检测圆形
questions = []
for cnt in cnts1:
(x,y,w,h) = cv2.boundingRect(cnt)
# print((x,y,w,h))
arc = w/float(h)
if w>20 and h>20 and arc >0.6 and arc<1.1:
questions.append(cnt)
print('一共有{}个选项'.format(len(questions)))
# print(questions)
#从上到下排序
boundingBox =[ cv2.boundingRect(i) for i in questions]
(questionCnts,boundingBox) = zip(*sorted(zip(questions,boundingBox),key=lambda b:b[1][1],reverse=False))
correct =0
#每行遍历
for (q,i) in enumerate(np.arange(0,len(questions),5)):
boundingBox = [cv2.boundingRect(c) for c in questionCnts[i:i+5]]
(cnts,boundingBox) = zip(*sorted(zip(questionCnts[i:i+5],boundingBox),key=lambda b:b[1][0],reverse=False)) #每行从左到右排序
bubble = None
for (j,c) in enumerate(cnts): #遍历每一行
mask = np.zeros_like(thresh)
cv2.drawContours(mask, [c], -1, 255, -1) #不能丢
mask = cv2.bitwise_and(thresh,thresh,mask=mask)
# cv_show('mask', mask)
total = cv2.countNonZero(mask)
if bubble is None or total>bubble[0]:
bubble=(total,j)
k = ANSWER_KEY[q]
if k==bubble[1]:
correct += 1
score = (correct/5)*100
# print(score)
print('[INFO]score : {:.2f}%'.format(score))
cv2.putText(wraped,'{:.2f}%'.format(score),(10,30),cv2.FONT_HERSHEY_SIMPLEX,0.9,(150,36,36),3)
# cv2.putText(wraped,score,(30,10),cv2.FONT_HERSHEY_SIMPLEX,0.9,(123,123,123),3)
cv_show('score',wraped)