写在前面:博客推行版本更新,成果积累制度,已经写过的博客还会再次更新,不断地琢磨,高质量高数量都是要追求的,工匠精神是学习必不可少的精神。因此,大家有何建议欢迎在评论区踊跃发言,你们的支持是我最大的动力,你们敢投,我就敢肝
二叉树的前序遍历
给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 示例 1: 输入:root = [1,null,2,3] 输出:[1,2,3] 示例 2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1] 输出:[1] 示例 4: 输入:root = [1,2] 输出:[1,2] 示例 5: 输入:root = [1,null,2] 提示: 树中节点数目在范围 [0, 100] 内 -100 <= Node.val <= 100 进阶:递归算法很简单,你可以通过迭代算法完成吗? |
二叉树的中序遍历
给定一个二叉树的根节点 root ,返回它的 中序 遍历。 输出:[1,3,2] 输出:[2,1] |
二叉树的后序遍历
给定一个二叉树,返回它的 后序 遍历。 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? |
二叉树的层序遍历
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。 示例: 二叉树:[3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 返回其层序遍历结果: [ [3], [9,20], [15,7] ] |
二叉树的最大深度
给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 给定二叉树 [3,9,20,null,null,15,7], 返回它的最大深度 3 。 |
对称二叉树
给定一个二叉树,检查它是否是镜像对称的。 例如,二叉树 [1,2,2,3,4,4,3] 是对称的。 1 2 2 / \ / \ 3 4 4 3 但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的: \ \ 3 3 进阶: 你可以运用递归和迭代两种方法解决这个问题吗? |
路径总和
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。 叶子节点 是指没有子节点的节点。 输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22 输出:true 解释:等于目标和的根节点到叶节点路径如上图所示。 输入:root = [1,2,3], targetSum = 5 输出:false 解释:树中存在两条根节点到叶子节点的路径: (1 --> 2): 和为 3 (1 --> 3): 和为 4 不存在 sum = 5 的根节点到叶子节点的路径。 输入:root = [], targetSum = 0 解释:由于树是空的,所以不存在根节点到叶子节点的路径。 |
从中序与后序遍历序列构造二叉树
根据一棵树的中序遍历与后序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树: |
从前序与中序遍历序列构造二叉树
给定一棵树的前序遍历 preorder 与中序遍历 inorder。请构造二叉树并返回其根节点。 示例 1: Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7] Output: [3,9,20,null,null,15,7] 示例 2: Input: preorder = [-1], inorder = [-1] Output: [-1] 提示: 1 <= preorder.length <= 3000 inorder.length == preorder.length -3000 <= preorder[i], inorder[i] <= 3000 preorder 和 inorder 均无重复元素 inorder 均出现在 preorder preorder 保证为二叉树的前序遍历序列 inorder 保证为二叉树的中序遍历序列 |
填充每个节点的下一个右侧节点指针
给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下: struct Node { int val; Node *left; Node *right; Node *next; } 填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。 初始状态下,所有 next 指针都被设置为 NULL。 你只能使用常量级额外空间。 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。 输入:root = [1,2,3,4,5,6,7] 输出:[1,#,2,3,#,4,5,6,7,#] 解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。 树中节点的数量少于 4096 -1000 <= node.val <= 1000 |
填充每个节点的下一个右侧节点指针II
给定一个二叉树 输入:root = [1,2,3,4,5,null,7] 输出:[1,#,2,3,#,4,5,7,#] 解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化输出按层序遍历顺序(由 next 指针连接),'#' 表示每层的末尾。 树中的节点数小于 6000 -100 <= node.val <= 100 |
二叉树的最近公共祖先
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。” 输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出:3 解释:节点 5 和节点 1 的最近公共祖先是节点 3 。 输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出:5 解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。 输入:root = [1,2], p = 1, q = 2 输出:1 树中节点数目在范围 [2, 105] 内。 -109 <= Node.val <= 109 所有 Node.val 互不相同 。 p != q p 和 q 均存在于给定的二叉树中。 |
二叉树的序列化与反序列化
序列化是将一个数据结构或者对象转换为连续的比特位的操作,进而可以将转换后的数据存储在一个文件或者内存中,同时也可以通过网络传输到另一个计算机环境,采取相反方式重构得到原数据。 请设计一个算法来实现二叉树的序列化与反序列化。这里不限定你的序列 / 反序列化算法执行逻辑,你只需要保证一个二叉树可以被序列化为一个字符串并且将这个字符串反序列化为原始的树结构。 提示: 输入输出格式与 LeetCode 目前使用的方式一致,详情请参阅 LeetCode 序列化二叉树的格式。你并非必须采取这种方式,你也可以采用其他的方法解决这个问题。 输入:root = [1,2,3,null,null,4,5] 输出:[1,2,3,null,null,4,5] 树中结点数在范围 [0, 104] 内 -1000 <= Node.val <= 1000 |
在黑夜里梦想着光,心中覆盖悲伤,在悲伤里忍受孤独,空守一丝温暖。
我的泪水是无底深海,对你的爱已无言,相信无尽的力量,那是真爱永在。
我的信仰是无底深海,澎湃着心中火焰,燃烧无尽的力量,那是忠诚永在