天天看点

usaco training 6.1 牛异或 前缀异或和+异或字典树

题意

农夫约翰在给他的奶牛们喂食时遇到了一个问题。

他共有 N 头奶牛,编号 1∼N。

每次喂食前,这 N 头奶牛会按照 1∼N 的顺序站成一排。

此外,每头奶牛都被分配了一个可能不唯一的整数。

那么所有被分配的整数就形成了一个长度为 N 的整数序列。

请你在该整数序列中找出一个连续的非空子序列,使得子序列中元素的异或和能够最大。

如果存在多个这样的序列,那么选择序列末端整数对应的奶牛编号更小的那个序列。

如果仍然存在多个可选的序列,那么选择长度最短的那个序列。

输入格式

第一行包含整数 N。

第 2∼N+1 行,每行包含一个整数,其中第 i 行的整数表示编号为 i−1 的牛被分配的整数值。

输出格式

输出三个整数,分别表示最大的异或和,所选序列首端整数对应的奶牛编号,所选序列末端整数对应的奶牛编号。

数据范围

1≤N≤105,

分配给奶牛的整数的范围是 [0,221−1]。

输入样例:

5

1

4

2

输出样例:

6 4 5

题解

  • 定义sum^=sum[i-1],即前缀异或和,则l-r的区间异或和sum[l~r] = sum[r] ^ sum[l-1],题意转为求sum数组中最大的异或对(两个数)。
  • 异或字典树可以求某一个数和一组数中的最大异或对。
  • 题目要求输出长度最小的区间,并且右端点r也应该最小,固定求r,求前面的最大的j即可。