天天看点

从源码分析Hystrix工作机制

本文从源码角度分析了Hystrix熔断、隔离、健康统计等核心模块的实现原理,加强对底层原理的理解可以更加便捷的使用它。

在复杂的分布式应用中有着许多的依赖,各个依赖都有难免在某个时刻失败,如果应用不隔离各个依赖,降低外部的风险,那容易拖垮整个应用。

举个电商场景中常见的例子,比如订单服务调用了库存服务、商品服务、积分服务、支付服务,系统均正常情况下,订单模块正常运行。

从源码分析Hystrix工作机制

但是当积分服务发生异常时且会阻塞30s时,订单服务就有有部分请求失败,且工作线程阻塞在调用积分服务上。

从源码分析Hystrix工作机制

流量高峰时,问题会更加严重,订单服务的所有请求都会阻塞在调用积分服务上,工作线程全部挂起,导致机器资源耗尽,订单服务也不可用,造成级联影响,整个集群宕机,这种称为雪崩效应。

从源码分析Hystrix工作机制

所以需要一种机制,使得单个服务出现故障时,整个集群可用性不受到影响。Hystrix就是实现这种机制的框架,下面我们分析一下Hystrix整体的工作机制。

从源码分析Hystrix工作机制

【入口】Hystrix的执行入口是HystrixCommand或HystrixObservableCommand对象,通常在Spring应用中会通过注解和AOP来实现对象的构造,以降低对业务代码的侵入性;

【缓存】HystrixCommand对象实际开始执行后,首先是否开启缓存,若开启缓存且命中,则直接返回;

【熔断】若熔断器打开,则执行短路,直接走降级逻辑;若熔断器关闭,继续下一步,进入隔离逻辑。熔断器的状态主要基于窗口期内执行失败率,若失败率过高,则熔断器自动打开;

【隔离】用户可配置走线程池隔离或信号量隔离,判断线程池任务已满(或信号量),则进入降级逻辑;否则继续下一步,实际由线程池任务线程执行业务调用;

【执行】实际开始执行业务调用,若执行失败或异常,则进入降级逻辑;若执行成功,则正常返回;

【超时】通过定时器延时任务检测业务调用执行是否超时,若超时则取消业务执行的线程,进入降级逻辑;若未超时,则正常返回。线程池、信号量两种策略均隔离方式支持超时配置(信号量策略存在缺陷);

【降级】进入降级逻辑后,当业务实现了HystrixCommand.getFallback() 方法,则返回降级处理的数据;当未实现时,则返回异常;

【统计】业务调用执行结果成功、失败、超时等均会进入统计模块,通过健康统计结果来决定熔断器打开或关闭。

都说源码里没有秘密,下面我们来分析下核心功能源码,看看Hystrix如何实现整体的工作机制。

家用电路中都有保险丝,保险丝的作用场景是,当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏电路中的某些重要器件或贵重器件,也有可能烧毁电路甚至造成火灾。

若电路中正确地安置了保险丝,那么保险丝就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护电路安全运行的作用。Hystrix提供的熔断器就有类似功能,应用调用某个服务提供者,当一定时间内请求总数超过配置的阈值,且窗口期内错误率过高,那Hystrix就会对调用请求熔断,后续的请求直接短路,直接进入降级逻辑,执行本地的降级策略。

Hystrix具有自我调节的能力,熔断器打开在一定时间后,会尝试通过一个请求,并根据执行结果调整熔断器状态,让熔断器在closed,open,half-open三种状态之间自动切换。

从源码分析Hystrix工作机制

【HystrixCircuitBreaker】boolean attemptExecution():每次HystrixCommand执行,都要调用这个方法,判断是否可以继续执行,若熔断器状态为打开且超过休眠窗口,更新熔断器状态为half-open;通过CAS原子变更熔断器状态来保证只放过一条业务请求实际调用提供方,并根据执行结果调整状态。

【HystrixCircuitBreaker】void markSuccess():HystrixCommand执行成功后调用,当熔断器状态为half-open,更新熔断器状态为closed。此种情况为熔断器原本为open,放过单条请求实际调用服务提供者,并且后续执行成功,Hystrix自动调节熔断器为closed。

【HystrixCircuitBreaker】void markNonSuccess():HystrixCommand执行成功后调用,若熔断器状态为half-open,更新熔断器状态为open。此种情况为熔断器原本为open,放过单条请求实际调用服务提供者,并且后续执行失败,Hystrix继续保持熔断器打开,并把此次请求作为休眠窗口期开始时间。

【HystrixCircuitBreaker】void subscribeToStream():熔断器订阅健康统计结果,若当前请求数据大于一定值且错误率大于阈值,自动更新熔断器状态为opened,后续请求短路,不再实际调用服务提供者,直接进入降级逻辑。

在货船中,为了防止漏水和火灾的扩散,一般会将货仓进行分割,避免了一个货仓出事导致整艘船沉没的悲剧。同样的,在Hystrix中,也采用了这样的舱壁模式,将系统中的服务提供者隔离起来,一个服务提供者延迟升高或者失败,并不会导致整个系统的失败,同时也能够控制调用这些服务的并发度。如下图,订单服务调用下游积分、库存等服务使用不同的线程池,当积分服务故障时,只会把对应线程池打满,而不会影响到其他服务的调用。Hystrix隔离模式支持线程池和信号量两种方式。

从源码分析Hystrix工作机制

信号量模式控制单个服务提供者执行并发度,比如单个CommondKey下正在请求数为N,若N小于maxConcurrentRequests,则继续执行;若大于等于maxConcurrentRequests,则直接拒绝,进入降级逻辑。信号量模式使用请求线程本身执行,没有线程上下文切换,开销较小,但超时机制失效。

【AbstractCommand】ObservableapplyHystrixSemantics(finalAbstractCommand _cmd):尝试获取信号量,若能获取到,则继续调用服务提供者;若不能获取到,则进入降级策略。

【AbstractCommand】TryableSemaphore getExecutionSemaphore():获取信号量实例,若当前隔离模式为信号量,则根据commandKey获取信号量,不存在时初始化并缓存;若当前隔离模式为线程池,则使用默认信号量TryableSemaphoreNoOp.DEFAULT,全部请求可通过。

线程池模式控制单个服务提供者执行并发度,代码上都会先走获取信号量,只是使用默认信号量,全部请求可通过,然后实际调用线程池逻辑。线程池模式下,比如单个CommondKey下正在请求数为N,若N小于maximumPoolSize,会先从 Hystrix 管理的线程池里面获得一个线程,然后将参数传递给任务线程去执行真正调用,如果并发请求数多于线程池线程个数,就有任务需要进入队列排队,但排队队列也有上限,如果排队队列也满,则进去降级逻辑。线程池模式可以支持异步调用,支持超时调用,存在线程切换,开销大。

【AbstractCommand】ObservableexecuteCommandWithSpecifiedIsolation(final AbstractCommand _cmd):从线程池中获取线程,并执行,过程中记录线程状态。

【HystrixThreadPool】Subscription schedule(final Action0 action):HystrixContextScheduler是Hystrix对rx中Scheduler调度器的重写,主要为了实现在Observable未被订阅时,不执行命令,以及支持在命令执行过程中能够打断运行。在rx中,Scheduler将生成对应的Worker给Observable用于执行命令,由Worker具体负责相关执行线程的调度,ThreadPoolWorker是Hystrix自行实现的Worker,执行调度的核心方法。

从源码分析Hystrix工作机制

Hystrix超时机制降低了第三方依赖项延迟过高对调用方的影响,使请求快速失败。主要通过延迟任务机制实现,包括注册延时任务过程和执行延时任务过程。

当隔离策略为线程池时,主线程订阅执行结果,线程池中任务线程调用提供者服务端,同时会有定时器线程在一定时间后检测任务是否完成,若未完成则表示任务超时,抛出超时异常,并且后续任务线程的执行结果也会跳过不再发布;若已完成则表示任务在超时时间内完成执行完成,定时器检测任务结束。

当隔离策略为信号量时,主线程订阅执行结果并实际调用提供者服务端(没有任务线程),当超出指定时间,主线程仍然会执行完业务调用,然后抛出超时异常。信号量模式下超时配置有一定缺陷,不能取消在执行的调用,并不能限制主线程返回时间。

【AbstractCommand】ObservableexecuteCommandAndObserve(finalAbstractCommand _cmd):超时检测入口,执行lift(new HystrixObservableTimeoutOperator(_cmd))关联超时检测任务。

【HystrixObservableTimeoutOperator】Subscriber<? super R> call(final Subscriber<? super R> child):创建检测任务,并关联延迟任务;若检测任务执行时仍未执行完成,则抛出超时异常;若已执行完成或异常,则清除检测任务。

【HystrixTimer】ReferenceaddTimerListener(finalTimerListener listener):addTimerListener通过java的定时任务服务scheduleAtFixedRate在延迟超时时间后执行。

public Reference addTimerListener(final TimerListener listener) {//初始化xianstartThreadIfNeeded();//构造检测任务Runnable r = new Runnable() {

Hystrix降级逻辑作为兜底的策略,当出现业务执行异常、线程池或信号量已满、执行超时等情况时,会进入降级逻辑。降级逻辑中应从内存或静态逻辑获取通用返回,尽量不依赖依赖网络调用,如果未实现降级方法或降级方法中也出现异常,则业务线程中会引发异常。

从源码分析Hystrix工作机制

【AbstractCommand】Observable getFallbackOrThrowException(finalAbstractCommand _cmd, final HystrixEventType eventType, final FailureType failureType, final String message, final Exception originalException):首先判断是否为不可恢复异常,若是则不走降级逻辑,直接异常返回;其次判断是否能获取到降级信号量,然后走降级逻辑;当降级逻辑中也发生异常或者没有降级方法实现时,则异常返回。

【HystrixCommand】R getFallback():HystrixCommand默认抛出操作不支持异常,需要子类覆写getFalBack方法实现降级逻辑。

Hystrix基于通过滑动窗口的数据统计判定服务失败占比选择性熔断,能够实现快速失败并走降级逻辑。步骤如下:

AbstractCommand执行完成后调⽤ handleCommandEnd⽅法将执行结果HystrixCommandCompletion事件发布到事件流中;

事件流通过 Observable.window()⽅法将事件按时间分组,并通过 flatMap()⽅法将事件按类型(成功、失败等)聚合成桶,形成桶流;

再将各个桶使⽤Observable.window()按窗口内桶数量聚合成滑动窗⼝数据;

将滑动窗口数据聚合成数据对象(如健康数据流、累计数据等);

熔断器CircuitBreaker初始化时订阅健康数据流,根据健康情况修改熔断器的开关。

从源码分析Hystrix工作机制

【AbstractCommand】void handleCommandEnd(boolean commandExecutionStarted):在业务执行完毕后,会调用handleCommandEnd方法,在此方法中,上报执行结果executionResult,这也是健康统计的入口。

【BucketedRollingCounterStream】BucketedRollingCounterStream(HystrixEventStream stream, final int numBuckets, int bucketSizeInMs,final Func2<Bucket, Event, Bucket> appendRawEventToBucket,final Func2<Output, Bucket, Output> re-duceBucket)

健康统计类HealthCountsStream的滑动窗口实现主要是在父类BucketedRollingCounterStream,首先父类BucketedCounterStream将事件流处理成桶流,BucketedRollingCounterStream处理成滑动窗口,然后由HealthCountsStream传入的reduceBucket函数处理成健康统计信息.

【HealthCounts】HealthCounts plus(long[] eventTypeCounts):对桶内数据按事件类型累计,生成统计数据HealthCounts;

在分布式环境中,不可避免地会有许多服务的依赖项中有的失败。Hystrix作为一个库,可通过添加熔断、隔离、降级等逻辑来帮助用户控制分布式服务之间的交互,以提高系统的整体弹性。主要功能如下:

保护系统,控制来自访问第三方依赖项(通常是通过网络)的延迟和失败

阻止复杂分布式系统中的级联故障

快速失败并快速恢复

平滑降级

近乎实时的监控,警报和控制

Hystrix使用过程中,有一些要注意的点:

覆写的getFallback()方法,尽量不要有网络依赖。如果有网络依赖,建议采用多次降级,即在getFallback()内实例化 HystrixCommand,并执行Command。getFallback()尽量保证高性能返回,快速降级。

HystrixCommand 建议采用的是线程隔离策略。

hystrix.threadpool.default.allowMaximumSizeToDivergeFromCoreSize设置为true时,hystrix.threadpool.default.maximumSize才会生效。最大线程数需要根据业务自身情况和性能测试结果来考量,尽量初始时设置小一些,支持动态调整大小,因为它是减少负载并防止资源在延迟发生时被阻塞的主要工具。

信号隔离策略下,执行业务逻辑时,使用的是应用服务的父级线程(如Tomcat容器线程)。所以,一定要设置好并发量,有网络开销的调用,不建议使用该策略,容易导致容器线程排队堵塞,从而影响整个应用服务。

另外Hystrix高度依赖RxJava这个响应式函数编程框架,简单了解RxJava的使用方式,有利于理解源码逻辑。

Hystrix Github仓库:https://github.com/Netflix/Hystrix

分享 vivo 互联网技术干货与沙龙活动,推荐最新行业动态与热门会议。

继续阅读