天天看点

蓝桥杯模拟赛:滑动解锁

题目:滑动解锁

滑动解锁是智能手机一项常用的功能。你需要在3x3的点阵上,从任意一个点开始,反复移动到一个尚未经过的”相邻”的点。这些划过的点所组成的有向折线,如果与预设的折线在图案、方向上都一致,那么手机将解锁。

所谓两个点“相邻”:当且仅当以这两个点为端点的线段上不存在尚未经过的点。

此外,许多手机都约定:这条折线还需要至少经过4个点。

为了描述方便,我们给这9个点从上到下、从左到右依次编号1-9。即如下排列:

1 2 3

4 5 6

7 8 9

那么1->2->3是非法的,因为长度不足。

1->3->2->4也是非法的,因为1->3穿过了尚未经过的点2。

2->4->1->3->6是合法的,因为1->3时点2已经被划过了。

某大神已经算出:一共有389112种不同的解锁方案。没有任何线索时,要想暴力解锁确实很难。

不过小Hi很好奇,他希望知道,当已经瞥视到一部分折线的情况下,有多少种不同的方案。

遗憾的是,小Hi看到的部分折线既不一定是连续的,也不知道方向。

例如看到1-2-3和4-5-6,

那么1->2->3->4->5->6,1->2->3->6->5->4, 3->2->1->6->5->4->8->9等都是可能的方案。

你的任务是编写程序,根据已经瞥到的零碎线段,求可能解锁方案的数目。

输入:

每个测试数据第一行是一个整数N(0 <= N <= 8),代表小Hi看到的折线段数目。

以下N行每行包含两个整数 X 和 Y (1 <= X, Y <= 9),代表小Hi看到点X和点Y是直接相连的。

输出:

对于每组数据输出合法的解锁方案数目。

例如:

8

1 2 2 3

3 4 4 5

5 6 6 7

7 8 8 9

程序应该输出:

2

再例如:

4

2 4

2 5

8 5

8 6

258