天天看点

(9)flink的kafka的结合

依赖

kafka的source

Flink+kafka是如何实现exactly-once语义的

kafka的消费

Flink通过checkpoint来保存数据是否处理完成的状态

由JobManager协调各个TaskManager进行checkpoint存储,checkpoint保存在 StateBackend中,默认StateBackend是内存级的,也可以改为文件级的进行持久化保存。

执行过程实际上是一个两段式提交,每个算子执行完成,会进行“预提交”,直到执行完sink操作,会发起“确认提交”,如果执行失败,预提交会放弃掉。

如果宕机需要通过StateBackend进行恢复,只能恢复所有确认提交的操作。