天天看点

[LeetCode] Split Array Largest Sum 分割数组的最大值

Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:

Given m satisfies the following constraint: 1 ≤ m ≤ length(nums) ≤ 14,000.

Examples:

这道题给了我们一个非负数的数组nums和一个整数m,让我们把数组分割成m个非空的连续子数组,让我们最小化m个子数组中的最大值。开始以为要用博弈论中的最小最大化算法,可是想了半天发现并不会做,于是后面决定采用无脑暴力破解,在nums中取出所有的m个子数组的情况都找一遍最大值,为了加快求子数组和的运算,还建立了累计和数组,可以还是TLE了,所以博主就没有办法了,只能上网参考大神们的解法,发现大家普遍使用了二分搜索法来做,感觉特别巧妙,原来二分搜索法还能这么用,厉害了我的哥。我们首先来分析,如果m和数组nums的个数相等,那么每个数组都是一个子数组,所以返回nums中最大的数字即可,如果m为1,那么整个nums数组就是一个子数组,返回nums所有数字之和,所以对于其他有效的m值,返回的值必定在上面两个值之间,所以我们可以用二分搜索法来做。我们用一个例子来分析,nums = [1, 2, 3, 4, 5], m = 3,我们将left设为数组中的最大值5,right设为数字之和15,然后我们算出中间数为10,我们接下来要做的是找出和最大且小于等于10的子数组的个数,[1, 2, 3, 4], [5],可以看到我们无法分为3组,说明mid偏大,所以我们让right=mid,然后我们再次进行二分查找哦啊,算出mid=7,再次找出和最大且小于等于7的子数组的个数,[1,2,3], [4], [5],我们成功的找出了三组,说明mid还可以进一步降低,我们让right=mid,然后我们再次进行二分查找哦啊,算出mid=6,再次找出和最大且小于等于6的子数组的个数,[1,2,3], [4], [5],我们成功的找出了三组,我们尝试着继续降低mid,我们让right=mid,然后我们再次进行二分查找哦啊,算出mid=5,再次找出和最大且小于等于5的子数组的个数,[1,2], [3], [4], [5],发现有4组,此时我们的mid太小了,应该增大mid,我们让left=mid+1,此时left=6,right=5,循环退出了,我们返回left即可,参见代码如下:

解法一:

解法二:

继续阅读