
GameConf:负责管理游戏的初始化设置信息。
GameService:负责游戏的逻辑实现。
其中GameConf的代码如下:cn\oyp\link\utils\GameConf.java
而GameService则是整个游戏逻辑实现的核心,而且GameService是一个可以复用的业务逻辑类,它于游戏平台无关,既可以在Java Swing中使用,也可以在Android游戏中使用,甚至只要稍作修改,GameService也可以移植到C#平台的连连看游戏中。
考虑到程序的可扩展行,先给GameService组件定义一个接口,代码如下:cn\oyp\link\board\GameService.java
下面来具体实现GameService组件,首先的public void start()方法,public Piece[][] getPieces()方法和public boolean hasPieces()方法很容易实现,具体实现如下:cn\oyp\link\board\impl\GameServiceImpl.java
首先当用户碰触游戏界面时,事件监听器获取的是该触碰到在游戏界面上的X、Y坐标,但是程序需要的是获取用户碰触的到底是那个方块,因此程序必须把界面上的X、Y坐标换算成在Piece[][]二维数组中的两个索引值。考虑到游戏界面上每个方块的高度和宽度都是相同的,因此想要将界面上的X、Y坐标换算成Piece[][]二维数组中的索引也比较简单,只要拿X、Y坐标值除以图片的宽、高即可。下面是根据触点X、Y坐标获取对于方块的代码:
上面的方法调用了getIndex(int relative,int size)方法,该方法的实现就是拿relative除以size,程序需要判断可以整除和不能整除两种情况:如果可以整除,说明还在前一个方块内;如果不能整除,则对于于下一个方块,下面是getIndex(int relative,int size)方法的代码:
两个方块可以相连的情况可以大致分为以下几种:
两个方块位于同一条水平线,可以直接相连。
两个方块位于同一条竖直线,可以直接相连。
两个方块以两条线段相连,也就是有1个拐角。
两个方块以三条线段相连,也就是有2个拐角。
下面的link(Piece p1, Piece p2)方法把这四种情况分开进行处理,代码如下:
所谓通道,指的是一个方块上、下、左、右四个方向上的空白方块,如下图所示:
下面是获取某个坐标点四周通道的四个方法:
上面调用到的hasPiece(int x, int y)方法是判断GamePanel中的x, y座标中是否有Piece对象的,代码如下:
如果两个Piece对象在Piece[][]数组中的第二维索引值相等,那么这两个Piece就在同一行,这时候需要判断两个Piece直接是否有障碍,调用isXBlock(Point p1,Point p2,int pieceWidth)方法,代码如下:
如果两个方块位于同一行,且它们之间没有障碍,那么这两个方块就可以消除,两个方块的连接信息就是它们的中心。
如果两个Piece对象在Piece[][]数组中的第一维索引值相等,那么这两个Piece就在同一列,这时候需要判断两个Piece直接是否有障碍,调用isYBlock(Point p1,Point p2,int pieceWidth)方法,代码如下:
如果两个方块位于同一列,且它们之间没有障碍,那么这两个方块就可以消除,两个方块的连接信息就是它们的中心。
对于两个方块连接线上只有一个转折点的情况,程序需要先找到这个转折点。为了找到这个转折点,程序定义了一个遍历两个通道并获取它们交点的方法,getWrapPoint(List<Point> p1Chanel, List<Point> p2Chanel),代码如下:
为了找出两个方块连接线上的连接点,程序需要分析p1和p2的位置分布。所以我们可以分析p2要么在p1的右上角,要么在p1的右下角。至于p2位于p1的左上角和左下角的情况,只要将p1、p2交换即可,如下图所示:
当p2位于p1右上角时候,应该计算p1的右通道和p2的下通道是否有交点,p1的上通道和p2的左通道是否有交点。
当p2位于p1右下角时候,应该计算p1的右通道和p2的上通道是否有交点,p1的下通道和p2的左通道是否有交点。
下面是具体是实现方法getCornerPoint(Point point1, Point point2, int pieceWidth,
int pieceHeight)的代码:
上面方法调用了以下四个方法:
两个转折点可以分为以下几种情况讨论:
p1、p2位于同一行,不能直接相连,就必须有两个转折点,分向上和向下两种连接情况。
p1、p2位于同一行,不能直接相连,就必须有两个转折点,分向左和向右两种连接情况。
p2在p1的右下角,有6中转折情况。
p2在p1的右上角,也有6种转折情况。
至于p2位于p1的左上角和左下角的情况,只要将p1、p2交换即可。
当p1与p2位于同一行不能直接相连,这两个点既可以在上面相连,也可以在下面相连,这两种情况都代表他们可以相连,先把这两种情况加入到结果中,最后去计算最近的距离。
实现时先构建一个Map,Map的key为第一个转折点,Map的value为第二个转折点,如果Map的size()大于1,说明这两个Point有多种连接途径,那么程序还需要计算路径最小的连接方式。
当p1与p2位于同一列不能直接相连,这两个点既可以在左边相连,也可以在右边相连,这两种情况都代表他们可以相连,先把这两种情况加入到结果中,最后去计算最近的距离。
定义一个方法来处理上面具有两个连接点的情况,getLinkPoints(Point point1, Point point2,
int pieceWidth, int pieceHeight),代码如下所示:
上面调用的getXLinkPoints、getYLinkPoints方法代码如下:
为了找出所有连接情况中的最短路径,程序可以分为以下2步骤来实现:
遍历转折点Map中的所有key-value对,与原来选择的两个点构成一个LinkInfo。每个LinkInfo代表一条完整的连接路径,并将这些LinkInfo搜集成一个List集合。
遍历第一步得到的List<LinkInfo>集合,计算每个LinkInfo中连接全部连接点的总距离,选与最短距离相差最小的LinkInfo返回。
关于具体的实现步骤,请参考下面的链接:
<a target="_blank" href="http://blog.csdn.net/ouyang_peng/article/details/14115627">我的Android进阶之旅------>Android疯狂连连看游戏的实现之游戏效果预览(一)</a>
<a target="_blank" href="http://blog.csdn.net/ouyang_peng/article/details/14116701">我的Android进阶之旅------>Android疯狂连连看游戏的实现之开发游戏界面(二)</a>
<a target="_blank" href="http://blog.csdn.net/ouyang_peng/article/details/14117487">我的Android进阶之旅------>Android疯狂连连看游戏的实现之状态数据模型(三)</a>
<a target="_blank" href="http://blog.csdn.net/ouyang_peng/article/details/14118001">我的Android进阶之旅------>Android疯狂连连看游戏的实现之加载界面图片和实现游戏Activity(四)</a>
<a target="_blank" href="http://blog.csdn.net/ouyang_peng/article/details/14118213">我的Android进阶之旅------>Android疯狂连连看游戏的实现之实现游戏逻辑(五)</a>
==================================================================================================
作者:欧阳鹏 欢迎转载,与人分享是进步的源泉!