天天看点

[转载]python 详解re模块

正则表达式的元字符有. ^ $ * ? {

[ ] | ( )

.表示任意字符

[]用来匹配一个指定的字符类别,所谓的字符类别就是你想匹配的一个字符集,对于字符集中的字符可以理解成或的关系。

^ 如果放在字符串的开头,则表示取非的意思。[^5]表示除了5之外的其他字符。而如果^不在字符串的开头,则表示它本身。

具有重复功能的元字符:

* 对于前一个字符重复0到无穷次

对于前一个字符重复1到无穷次

?对于前一个字符重复0到1次

{m,n} 对于前一个字符重复次数在为m到n次,其中,{0,} = *,{1,} = , {0,1} = ?

{m} 对于前一个字符重复m次

d 匹配任何十进制数;它相当于类 [0-9]。

D 匹配任何非数字字符;它相当于类 [^0-9]。

s 匹配任何空白字符;它相当于类 [ fv]。

S 匹配任何非空白字符;它相当于类 [^ fv]。

w 匹配任何字母数字字符;它相当于类 [a-zA-Z0-9_]。

W 匹配任何非字母数字字符;它相当于类 [^a-zA-Z0-9_]。

正则表达式(可以称为REs,regex,regex

pattens)是一个小巧的,高度专业化的编程语言,它内嵌于python开发语言中,可通过re模块使用。正则表达式的

pattern可以被编译成一系列的字节码,然后用C编写的引擎执行。下面简单介绍下正则表达式的语法

正则表达式包含一个元字符(metacharacter)的列表,列表值如下:   

. ^ $ * + ? { [ ] | ( )

    1.元字符([ ]),它用来指定一个character

class。所谓character

classes就是你想要匹配的字符(character)的集合.字符(character)可以单个的列出,也可以通过"-"来分隔两个字符来表示一

个范围。例如,[abc]匹配a,b或者c当中任意一个字符,[abc]也可以用字符区间来表示---[a-c].如果想要匹配单个大写字母,你可以用

[A-Z]。

元字符(metacharacters)在character

class里面不起作用,如[akm$]将匹配"a","k","m","$"中的任意一个字符。在这里元字符(metacharacter)"$"就是一个普通字符。

2.元字符[^]. 你可以用补集来匹配不在区间范围内的字符。其做法是把"^"作为类别的首个字符;其它地方的"^"只会简单匹配

"^"字符本身。例如,[^5] 将匹配除 "5" 之外的任意字符。同时,在[

]外,元字符^表示匹配字符串的开始,如"^ab+"表示以ab开头的字符串。

举例验证,

>>>

m=re.search("^ab+","asdfabbbb")

  >>> print

m

    None

    >>>

m=re.search("ab+","asdfabbbb")

print m

    <_sre.SRE_Match

object at 0x011B1988>

print m.group()

    abbbb

上例不能用re.match,因为match匹配字符串的开始,我们无法验证元字符"^"是否代表字符串的开始位置。

m=re.match("^ab+","asdfabbbb")

>>> print m

None

m=re.match("ab+","asdfabbbb")

    None

#验证在元字符[]中,"^"在不同位置所代表的意义。

 >>>

re.search("[^abc]","abcd") 

#"^"在首字符表示取反,即abc之外的任意字符。

 <_sre.SRE_Match object at

0x011B19F8>

m=re.search("[^abc]","abcd")

m.group()

 'd'

m=re.search("[abc^]","^")  #如果"^"在[

]中不是首字符,那么那就是一个普通字符

 '^'

the start

also matches immediately after each newline.

我理解的是”^”匹配字符串的开始,在MULTILINE模式下,也匹配换行符之后。

m=re.search("^aw+","abcdfana1b2c3")

>>> m.group()

 'abcdfa'

m=re.search("^aw+","abcdfana1b2c3",re.MULTILINE),

m.group()  #

认为flag设定为re.MULTILINE,根据上面那段话,他也应该匹配换行符之后,所以应该有m.group应该有"a1b2c3",但是结果没

有,用findall来尝试,可以找到结果。所以这里我理解之所以group里面没有,是因为search和match方法是匹配到就返回,而不是去匹配

所有。

m=re.findall("^aw+","abcdfana1b2c3",re.MULTILINE)

 ['abcdfa', 'a1b2c3']

   3.

元字符(),元字符backslash。做为 Python 中的字符串字母,反斜杠后面可以加不同的字符以表示不同特殊意义。

   它也可以用于取消所有的元字符,这样你

就可以在模式中匹配它们了。例如,如果你需要匹配字符 "[" 或 "",你可以在它们之前用反斜杠来取消它们的特殊意义: [ 或

\

   4。元字符($)匹配字符串的结尾或者字符串结尾的换行之前。(在MULTILINE模式下,"$"也匹配换行之前)

   正则表达式"foo"既匹配"foo"又匹配"foobar",而"foo$"仅仅匹配"foo".

  

  

re.findall("foo.$","foo1nfoo2n")#匹配字符串的结尾的换行符之前。

['foo2']

re.findall("foo.$","foo1nfoo2n",re.MULTILINE)

['foo1', 'foo2']

  >>>

m=re.search("foo.$","foo1nfoo2n")

  >>> m

  <_sre.SRE_Match object at

0x00A27170>

  'foo2'

m=re.search("foo.$","foo1nfoo2n",re.MULTILINE)

  'foo1'

看来re.MULTILINE对$的影响还是蛮大的。

5.元字符(*),匹配0个或多个

6.元字符(?),匹配一个或者0个

7.元字符(+), 匹配一个或者多个

     8,元字符(|),

表示"或",如A|B,其中A,B为正则表达式,表示匹配A或者B

9.元字符({})

     {m},用来表示前面正则表达式的m次copy,如"a{5}",表示匹配5个”a”,即"aaaaa"

re.findall("a{5}","aaaaaaaaaa")

 ['aaaaa', 'aaaaa']

re.findall("a{5}","aaaaaaaaa")

 ['aaaaa']

   {m.n}用来表示前面正则表达式的m到n次copy,尝试匹配尽可能多的copy。

   >>>

re.findall("a{2,4}","aaaaaaaa")

 ['aaaa', 'aaaa']

   通过上面的例子,可以看到{m,n},正则表达式优先匹配n,而不是m,因为结果不是["aa","aa","aa","aa"]

re.findall("a{2}","aaaaaaaa")

 ['aa', 'aa', 'aa', 'aa']

   {m,n}? 

用来表示前面正则表达式的m到n次copy,尝试匹配尽可能少的copy   

re.findall("a{2,4}?","aaaaaaaa")

   10。元字符(  "(

)" ),用来表示一个group的开始和结束。

   比较常用的有(REs),(?P<name>REs),这是无名称的组和有名称的group,有名称的group,可以通过matchObject.group(name)

   获取匹配的group,而无名称的group可以通过从1开始的group序号来获取匹配的组,如matchObject.group(1)。具体应用将在下面的group()方法中举例讲解

   11.元字符(.)

 元字符“.”在默认模式下,匹配除换行符外的所有字符。在DOTALL模式下,匹配所有字符,包括换行符。

import re

re.match(".","n")

m=re.match(".","n")

 None

m=re.match(".","n",re.DOTALL)

0x00C2CE20>

 'n'

 下面我们首先来看一下Match Object对象拥有的方法,下面是常用的几个方法的简单介绍

 1.group([group1,…])

 

 返回匹配到的一个或者多个子组。如果是一个参数,那么结果就是一个字符串,如果是多个参数,那么结果就是一个参数一个item的元组。group1的默

认值为0(将返回所有的匹配值).如果groupN参数为0,相对应的返回值就是全部匹配的字符串,如果group1的值是[1…99]范围之内的,那么

将匹配对应括号组的字符串。如果组号是负的或者比pattern中定义的组号大,那么将抛出IndexError异常。如果pattern没有匹配到,但

是group匹配到了,那么group的值也为None。如果一个pattern可以匹配多个,那么组对应的是样式匹配的最后一个。另外,子组是根据括号

从左向右来进行区分的。

 >>> m=re.match("(w+)

(w+)","abcd efgh, chaj")

m.group()           

# 匹配全部

 'abcd efgh'

m.group(1)    

# 第一个括号的子组.

 'abcd'

 >>> m.group(2)

 'efgh'

m.group(1,2)        

  # 多个参数返回一个元组

 ('abcd', 'efgh')

m=re.match("(?P<first_name>w+)

(?P<last_name>w+)","sam

lee")

m.group("first_name") 

#使用group获取含有name的子组

 'sam'

m.group("last_name")

 'lee'

 下面把括号去掉

 >>> m=re.match("w+

w+","abcd efgh, chaj")

 >>> m.group()

 >>> m.group(1)

 Traceback (most recent call last):

   File

"<pyshell#32>", line 1, in

<module>

   m.group(1)

 IndexError: no such group

 If a group matches multiple times, only the last match is

accessible:

   如果一个组匹配多个,那么仅仅返回匹配的最后一个的。

m=re.match(r"(..)+","a1b2c3")

 'c3'

 'a1b2c3'

 Group的默认值为0,返回正则表达式pattern匹配到的字符串

s="afkak1aafal12345adadsfa"

pattern=r"(d)w+(d{2})w"

m=re.match(pattern,s)

 >>> print m

m=re.search(pattern,s)

 >>> m

0x00C2FDA0>

 '1aafal12345a'

 '1'

 '45'

m.group(1,2,0)

 ('1', '45', '1aafal12345a')

<b></b>

 2。groups([default])

 返回一个包含所有子组的元组。Default是用来设置没有匹配到组的默认值的。Default默认是"None”,

m=re.match("(d+).(d+)","23.123")

 &gt;&gt;&gt; m.groups()

 ('23', '123')

m=re.match("(d+).?(d+)?","24") #这里的第二个d没有匹配到,使用默认值"None"

 ('24', None)

 &gt;&gt;&gt; m.groups("0")

 ('24', '0')

 3.groupdict([default])

 返回匹配到的所有命名子组的字典。Key是name值,value是匹配到的值。参数default是没有匹配到的子组的默认值。这里与groups()方法的参数是一样的。默认值为None

(w+)","hello world")

 &gt;&gt;&gt; m.groupdict()

 {}

m=re.match("(?P&lt;first&gt;w+)

(?P&lt;secode&gt;w+)","hello world")

 {'secode': 'world', 'first': 'hello'}

 通过上例可以看出,groupdict()对没有name的子组不起作用

正则表达式对象

 re.search(string[, pos[, endpos]])

 扫描字符串string,查找与正则表达式匹配的位置。如果找到一个匹配就返回一个MatchObject对象(并不会匹配所有的)。如果没有找到那么返回None。

 第二个参数表示从字符串的那个位置开始,默认是0

 第三个参数endpos限定字符串最远被查找到哪里。默认值就是字符串的长度。.

m=re.search("abcd", '1abcd2abcd')

m.group()  #找到即返回一个match

object,然后根据该对象的方法,查找匹配到的结果。

m.start()

 1

 &gt;&gt;&gt; m.end()

 5

re.findall("abcd","1abcd2abcd")

 ['abcd', 'abcd']

 re.<b>split</b>(pattern, string[, maxsplit=0, flags=0])

 用pattern来拆分string。如果pattern有含有括号,那么在pattern中所有的组也会返回。

re.split("W+","words,words,works",1)

 ['words', 'words,works']

re.split("[a-z]","0A3b9z",re.IGNORECASE)

 ['0A3', '9', '']

re.split("[a-z]+","0A3b9z",re.IGNORECASE)

re.split("[a-zA-Z]+","0A3b9z")

 ['0', '3', '9', '']

re.split('[a-f]+', '0a3B9',

re.IGNORECASE)#re.IGNORECASE用来忽略pattern中的大小写。

 ['0', '3B9']

 如果在split的时候捕获了组,并且匹配字符串的开始,那么返回的结果将会以一个空串开始。

 &gt;&gt;&gt; re.split('(W+)',

'...words, words...')

 ['', '...', 'words', ', ', 'words', '...', '']

'words, words...')

 ['words', ', ', 'words', '...', '']

 re.<b>findall</b>(pattern, string[, flags])

 以list的形式返回string中所有与pattern匹配的不重叠的字符串。String从左向右扫描,匹配的返回结果也是以这个顺序。

 Return all non-overlapping matches of pattern in string,

as a list of strings. The string is

scanned left-to-right, and matches are returned in the order found.

If one or more groups are present in the pattern, return a list of

groups; this will be a list of tuples if the pattern has more than

one group. Empty matches are included in the result unless they

touch the beginning of another match.

re.findall('(W+)', 'words, words...')

 [', ', '...']

re.findall('(W+)d', 'words, words...d')

 ['...']

re.findall('(W+)d', '...dwords, words...d')

 ['...', '...']

 re.<b>finditer</b>(pattern, string[, flags])

 与findall类似,只不过是返回list,而是返回了一个叠代器

  我们来看一个sub和subn的例子

re.sub("d","abc1def2hijk","RE")

 'RE'

x=re.sub("d","abc1def2hijk","RE")

 &gt;&gt;&gt; x

re.sub("d","RE","abc1def2hijk",)

 'abcREdefREhijk'

re.subn("d","RE","abc1def2hijk",)

 ('abcREdefREhijk', 2)

 通过例子我们可以看出sub和subn的差别:sub返回替换后的字符串,而subn返回由替换后的字符串以及替换的个数组成的元组。

 re.<b>sub</b>(pattern, repl, string[, count, flags])

用repl替换字符串string中的pattern。如果pattern没有匹配到,那么返回的字符串没有变化]。Repl可以是一个字符串,也可以是

一个function。如果是字符串,如果repl是个方法/函数。对于所有的pattern匹配到。他都回调用这个方法/函数。这个函数和方法使用单个

match object作为参数,然后返回替换后的字符串。下面是官网提供的例子: