天天看點

嵌入式Linux驅動學習【2】—— 按鍵驅動1 中斷流程2 程式

1 中斷流程

1.1 基本流程

  中斷的基本流程是:發生中斷,跳轉到異常向量入口,執行中斷函數,然後傳回。

  ARM架構CPU的異常向量基位址可以是0x0或0xFFFF0000,linux使用後者。ARMv4及以上版本,ARM中斷向量表的位址由CP15協處理器c1寄存器中V位(bit[13])控制。

  arch/cam/kernel/traps.c中通過early_trap_init()設定異常處理相量

void __init early_trap_init(void)
{
	unsigned long vectors = CONFIG_VECTORS_BASE; //0xFFFF0000
	....
	memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start);
	memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start);
	memcpy((void *)vectors + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz);

	....
}
           

  将 __vectors_start~__vectors_end之間的異常向量複制到0xffff0000處。在arch/arm/kernel/entry_armv.S中

__vectors_start:
 ARM(	swi	SYS_ERROR0	)
 THUMB(	svc	#0		)
 THUMB(	nop			)
	W(b)	vector_und + stubs_offset
	W(ldr)	pc, .LCvswi + stubs_offset
	W(b)	vector_pabt + stubs_offset
	W(b)	vector_dabt + stubs_offset
	W(b)	vector_addrexcptn + stubs_offset
	W(b)	vector_irq + stubs_offset
	W(b)	vector_fiq + stubs_offset
           

  發生異常後,查找異常相量,跳轉到異常處理程式。以vector_irq為例,

  vector_stub是一個标号,将上面進行展開後得到

.macro    vector_stub, name, mode, correction=0  //定義vector_stub有3個參數
.align      5
  vector_stub  irq, IRQ_MODE, 4   //這三個參數值代入 vector_stub中

vector_ irq:                   //定義 vector_ irq
  /*計算傳回位址(在arm流水線中,lr=pc+8,但是pc+4隻譯碼沒有執行,是以lr=lr-4) */
         sub    lr, lr, #4             
        
         @
         @ Save r0, lr_<exception> (parent PC) and spsr_<exception>
         @ (parent CPSR)
         @儲存r0和lr和spsr
         stmia sp, {r0, lr}               //存入sp棧裡  
         mrs   lr, spsr                       //讀出spsr
         str     lr, [sp, #8]           @ save spsr


         @
         @ Prepare for SVC32 mode.  IRQs remain disabled.
         @ 進入管理模式
         mrs   r0, cpsr                    //讀出cpsr
         eor    r0, r0, #(\mode ^ SVC_MODE)  
         msr   spsr_cxsf, r0

         @
         @ the branch table must immediately follow this code
         @
         and    lr, lr, #0x0f    //lr等于進入模式之前的spsr,&0X0F就等于模式位
         mov  r0, sp
         ldr     lr, [pc, lr, lsl #2]   //如果進入中斷前是usr,則取出PC+4*0的内容,即__irq_usr @如果進入中斷前是svc,則取出PC+4*3的内容,即__irq_svc

         movs pc, lr                    //跳轉到下面某處,且目标寄存器是pc,指令S結尾,最後會恢複cpsr.
     
         .long __irq_usr                              @  0  (USR_26 / USR_32)
         .long __irq_invalid                          @  1  (FIQ_26 / FIQ_32)
         .long __irq_invalid                          @  2  (IRQ_26 / IRQ_32)
         .long __irq_svc                              @  3  (SVC_26 / SVC_32)
         .long __irq_invalid                          @  4
         .long __irq_invalid                          @  5
         .long __irq_invalid                          @  6
         .long __irq_invalid                          @  7
         .long __irq_invalid                          @  8
         .long __irq_invalid                          @  9
         .long __irq_invalid                          @  a
         .long __irq_invalid                          @  b
         .long __irq_invalid                          @  c
         .long __irq_invalid                          @  d
         .long __irq_invalid                          @  e
         .long __irq_invalid                          @  f
           

  根據中斷前不同的模式,跳轉到相應的處理函數,以使用者模式下irq異常為例

__irq_usr --->
	irq_handler --->
		asm_do_IRQ --->   /arch/arm/kernel/irq.c中
			generic_handle_irq
           

  asm_do_IRQ是中斷處理的C入口函數。

#define irq_to_desc(irq)	(&irq_desc[irq]) //從irq中斷号,找到哪個中斷

static inline void generic_handle_irq_desc(unsigned int irq, struct irq_desc *desc)
{
	desc->handle_irq(irq, desc); //執行handle_irq
}

static inline void generic_handle_irq(unsigned int irq)
{
	generic_handle_irq_desc(irq, irq_to_desc(irq));
}
           

  從irq_desc數組中找到了中斷處理結構體,并調用handle_irq處理。

  從哪裡設定了irq_desc:kernel/irq/chip.c中__set_irq_handler設定handle_irq,__set_irq_handler又被set_irq_handler調用。

  看一下irq_desc資料結構

struct irq_desc {
	unsigned int		irq;
	irq_flow_handler_t	handle_irq; //中斷函數
	struct irq_chip		*chip; //底層通路
	struct irqaction	*action;	/* IRQ action list */
	...
} ____cacheline_internodealigned_in_smp;
           

  中斷(例如共享中斷)可有多個處理函數,當中斷産生後,會依次調用action連結清單中函數進行處理。

嵌入式Linux驅動學習【2】—— 按鍵驅動1 中斷流程2 程式

  從上面分析看出,中斷基本流程:中斷發生–>查找異常向量–>asm_do_IRQ–>desc.hand_irq–>.chip硬體相關處理,.action處理函數。

參考:ARM Linux中斷源碼分析(2)——中斷處理流程

1.2 外部中斷流程

  以外部中斷0為例,看下基本流程。

  在arch/arm/plat-s3c24xx中,s3c24xx_init_irq()通過set_irq_handler設定中斷處理函數,其中

for (irqno = IRQ_EINT0; irqno <= IRQ_EINT3; irqno++) { //IRQ_EINT0=16
		irqdbf("registering irq %d (ext int)\n", irqno);
		set_irq_chip(irqno, &s3c_irq_eint0t4);
		set_irq_handler(irqno, handle_edge_irq);
		set_irq_flags(irqno, IRQF_VALID);
	}
           

  當中斷發生,從irq_desc[16]數組中得到handle_irq,即handle_edge_irq。

void
handle_edge_irq(unsigned int irq, struct irq_desc *desc)
{
	...
		desc->chip->ack(irq);//用來清除中斷

	...
		action_ret = handle_IRQ_event(irq, action);//真正的處理函數
		...
}
           

  handle_edge_irq–>handle_IRQ_event,從action連結清單中,進行中斷函數。

irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
{
	...
	do {
		...
		ret = action->handler(irq, action->dev_id);
		...
		action = action->next;
	} while (action);
	...
}
           

2 程式

  s3c24xx_buttons.c

//在 linux-2.6.32.2/arch/arm/mach-s3c2410/include/mach 目錄下
#include<mach/regs-gpio.h>         // 和GPIO相關的宏定義
#include<mach/hardware.h>          //S3C2410_gpio_cfgpin

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>

//在 linux-2.6.32.2/arch/arm/include/asm 目錄下
#include<asm/irq.h>
#include<asm/uaccess.h>
#include<asm/atomic.h>
#include<asm/unistd.h>

#define DEVICE_NAME     "buttons_test"   /* 加載模式後,執行”cat /proc/devices”指令看到的裝置名稱 */
#define BUTTON_MAJOR    232         /* 主裝置号 */

struct button_irq_desc {
    int irq;
    unsigned long flags;
    char *name;
};


static struct button_irq_desc button_irqs [] = {
    {IRQ_EINT8, IRQF_TRIGGER_FALLING, "KEY1"}, /* K1 */
    {IRQ_EINT11, IRQF_TRIGGER_FALLING, "KEY2"}, /* K2 */
    {IRQ_EINT13,  IRQF_TRIGGER_FALLING, "KEY3"}, /* K3 */
    {IRQ_EINT14,  IRQF_TRIGGER_FALLING, "KEY4"}, /* K4 */
};


static volatile int press_cnt [] = {0, 0, 0, 0};

static DECLARE_WAIT_QUEUE_HEAD(button_waitq);

static volatile int ev_press = 0;

static irqreturn_t buttons_interrupt(int irq, void *dev_id)
{
    volatile int *press_cnt = (volatile int *)dev_id;
	
    printk(DEVICE_NAME " press_cnt:%d\n",press_cnt);
	
    *press_cnt = *press_cnt + 1; /* 按鍵計數加1 */
    ev_press = 1;                /* 表示中斷發生了 */
    wake_up_interruptible(&button_waitq);   /* 喚醒休眠的程序 */
    
    return IRQ_RETVAL(IRQ_HANDLED);
}



static int s3c24xx_buttons_open(struct inode *inode, struct file *file)
{
    int i;
    int err;
    
    for (i = 0; i < sizeof(button_irqs)/sizeof(button_irqs[0]); i++) {
        err = request_irq(button_irqs[i].irq, buttons_interrupt, button_irqs[i].flags, 
                          button_irqs[i].name, (void *)&press_cnt[i]);
        if (err)
            break;
    }

    if (err) {
        i--;
        for (; i >= 0; i--)
            free_irq(button_irqs[i].irq, (void *)&press_cnt[i]);
        return -EBUSY;
    }
    
    return 0;
}


static int s3c24xx_buttons_close(struct inode *inode, struct file *file)
{
    int i;
    
    for (i = 0; i < sizeof(button_irqs)/sizeof(button_irqs[0]); i++) {
        free_irq(button_irqs[i].irq, (void *)&press_cnt[i]);
    }

    return 0;
}



static int s3c24xx_buttons_read(struct file *filp, char __user *buff, 
                                         size_t count, loff_t *offp)
{
    unsigned long err;
    
    wait_event_interruptible(button_waitq, ev_press);

    ev_press = 0;

    err = copy_to_user(buff, (const void *)press_cnt, min(sizeof(press_cnt), count));
    memset((void *)press_cnt, 0, sizeof(press_cnt));

    return err ? -EFAULT : 0;
}


static struct file_operations s3c24xx_buttons_fops = {
    .owner   =   THIS_MODULE,    /* 這是一個宏,指向編譯子產品時自動建立的__this_module變量 */
    .open    =   s3c24xx_buttons_open,
    .release =   s3c24xx_buttons_close, 
    .read    =   s3c24xx_buttons_read,
};


static int __init s3c24xx_buttons_init(void)
{
    int ret;

    ret = register_chrdev(BUTTON_MAJOR, DEVICE_NAME, &s3c24xx_buttons_fops);
    if (ret < 0) {
      printk(DEVICE_NAME " can't register major number\n");
      return ret;
    }
    
    printk(DEVICE_NAME " initialized\n");
    return 0;
}

static void __exit s3c24xx_buttons_exit(void)
{
    unregister_chrdev(BUTTON_MAJOR, DEVICE_NAME);
}

module_init(s3c24xx_buttons_init);
module_exit(s3c24xx_buttons_exit);

MODULE_LICENSE("GPL");                              // 遵循的協定

           

  button_test.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>

int main(int argc, char **argv)
{
    int i;
    int ret;
    int fd;
    int press_cnt[4];
    
    fd = open("/dev/buttons_test", 0);  // 打開裝置
    if (fd < 0) {
        printf("Can't open /dev/buttons\n");
        return -1;
    }

    while (1) {
        // 讀出按鍵被按下的次數
        ret = read(fd, press_cnt, sizeof(press_cnt));
        if (ret < 0) {
            printf("read err!\n");
            continue;
        } 

        for (i = 0; i < sizeof(press_cnt)/sizeof(press_cnt[0]); i++) {
            // 如果被按下的次數不為0,列印出來
            if (press_cnt[i])
                printf("K%d has been pressed %d times!\n", i+1, press_cnt[i]);
        }
    }
    
    close(fd);
    return 0;    
}
           

  測試時要先解除安裝核心中原有按鍵驅動。

繼續閱讀