天天看點

python遺傳算法程式_python實作簡單遺傳算法

ObjFunction.pygew免費資源網

import math

def GrieFunc(vardim, x, bound):

"""

Griewangk function

"""

s1 = 0.

s2 = 1.

for i in range(1, vardim + 1):

s1 = s1 + x[i - 1] ** 2

s2 = s2 * math.cos(x[i - 1] / math.sqrt(i))

y = (1. / 4000.) * s1 - s2 + 1

y = 1. / (1. + y)

return y

def RastFunc(vardim, x, bound):

"""

Rastrigin function

"""

s = 10 * 25

for i in range(1, vardim + 1):

s = s + x[i - 1] ** 2 - 10 * math.cos(2 * math.pi * x[i - 1])

return s

GAIndividual.pygew免費資源網

import numpy as np

import ObjFunction

class GAIndividual:

'''

individual of genetic algorithm

'''

def __init__(self, vardim, bound):

'''

vardim: dimension of variables

bound: boundaries of variables

'''

self.vardim = vardim

self.bound = bound

self.fitness = 0.

def generate(self):

'''

generate a random chromsome for genetic algorithm

'''

len = self.vardim

rnd = np.random.random(size=len)

self.chrom = np.zeros(len)

for i in xrange(0, len):

self.chrom[i] = self.bound[0, i] + \

(self.bound[1, i] - self.bound[0, i]) * rnd[i]

def calculateFitness(self):

'''

calculate the fitness of the chromsome

'''

self.fitness = ObjFunction.GrieFunc(

self.vardim, self.chrom, self.bound)

GeneticAlgorithm.pygew免費資源網

import numpy as np

from GAIndividual import GAIndividual

import random

import copy

import matplotlib.pyplot as plt

class GeneticAlgorithm:

'''

The class for genetic algorithm

'''

def __init__(self, sizepop, vardim, bound, MAXGEN, params):

'''

sizepop: population sizepop

vardim: dimension of variables

bound: boundaries of variables

MAXGEN: termination condition

param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha

'''

self.sizepop = sizepop

self.MAXGEN = MAXGEN

self.vardim = vardim

self.bound = bound

self.population = []

self.fitness = np.zeros((self.sizepop, 1))

self.trace = np.zeros((self.MAXGEN, 2))

self.params = params

def initialize(self):

'''

initialize the population

'''

for i in xrange(0, self.sizepop):

ind = GAIndividual(self.vardim, self.bound)

ind.generate()

self.population.append(ind)

def evaluate(self):

'''

evaluation of the population fitnesses

'''

for i in xrange(0, self.sizepop):

self.population[i].calculateFitness()

self.fitness[i] = self.population[i].fitness

def solve(self):

'''

evolution process of genetic algorithm

'''

self.t = 0

self.initialize()

self.evaluate()

best = np.max(self.fitness)

bestIndex = np.argmax(self.fitness)

self.best = copy.deepcopy(self.population[bestIndex])

self.avefitness = np.mean(self.fitness)

self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness

self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness

print("Generation %d: optimal function value is: %f; average function value is %f" % (

self.t, self.trace[self.t, 0], self.trace[self.t, 1]))

while (self.t < self.MAXGEN - 1):

self.t += 1

self.selectionOperation()

self.crossoverOperation()

self.mutationOperation()

self.evaluate()

best = np.max(self.fitness)

bestIndex = np.argmax(self.fitness)

if best > self.best.fitness:

self.best = copy.deepcopy(self.population[bestIndex])

self.avefitness = np.mean(self.fitness)

self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness

self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness

print("Generation %d: optimal function value is: %f; average function value is %f" % (

self.t, self.trace[self.t, 0], self.trace[self.t, 1]))

print("Optimal function value is: %f; " %

self.trace[self.t, 0])

print "Optimal solution is:"

print self.best.chrom

self.printResult()

def selectionOperation(self):

'''

selection operation for Genetic Algorithm

'''

newpop = []

totalFitness = np.sum(self.fitness)

accuFitness = np.zeros((self.sizepop, 1))

sum1 = 0.

for i in xrange(0, self.sizepop):

accuFitness[i] = sum1 + self.fitness[i] / totalFitness

sum1 = accuFitness[i]

for i in xrange(0, self.sizepop):

r = random.random()

idx = 0

for j in xrange(0, self.sizepop - 1):

if j == 0 and r < accuFitness[j]:

idx = 0

break

elif r >= accuFitness[j] and r < accuFitness[j + 1]:

idx = j + 1

break

newpop.append(self.population[idx])

self.population = newpop

def crossoverOperation(self):

'''

crossover operation for genetic algorithm

'''

newpop = []

for i in xrange(0, self.sizepop, 2):

idx1 = random.randint(0, self.sizepop - 1)

idx2 = random.randint(0, self.sizepop - 1)

while idx2 == idx1:

idx2 = random.randint(0, self.sizepop - 1)

newpop.append(copy.deepcopy(self.population[idx1]))

newpop.append(copy.deepcopy(self.population[idx2]))

r = random.random()

if r < self.params[0]:

crossPos = random.randint(1, self.vardim - 1)

for j in xrange(crossPos, self.vardim):

newpop[i].chrom[j] = newpop[i].chrom[

j] * self.params[2] + (1 - self.params[2]) * newpop[i + 1].chrom[j]

newpop[i + 1].chrom[j] = newpop[i + 1].chrom[j] * self.params[2] + \

(1 - self.params[2]) * newpop[i].chrom[j]

self.population = newpop

def mutationOperation(self):

'''

mutation operation for genetic algorithm

'''

newpop = []

for i in xrange(0, self.sizepop):

newpop.append(copy.deepcopy(self.population[i]))

r = random.random()

if r < self.params[1]:

mutatePos = random.randint(0, self.vardim - 1)

theta = random.random()

if theta > 0.5:

newpop[i].chrom[mutatePos] = newpop[i].chrom[

mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))

else:

newpop[i].chrom[mutatePos] = newpop[i].chrom[

mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))

self.population = newpop

def printResult(self):

'''

plot the result of the genetic algorithm

'''

x = np.arange(0, self.MAXGEN)

y1 = self.trace[:, 0]

y2 = self.trace[:, 1]

plt.plot(x, y1, 'r', label='optimal value')

plt.plot(x, y2, 'g', label='average value')

plt.xlabel("Iteration")

plt.ylabel("function value")

plt.title("Genetic algorithm for function optimization")

plt.legend()

plt.show()

運作程式:gew免費資源網

if __name__ == "__main__":

bound = np.tile([[-600], [600]], 25)

ga = GA(60, 25, bound, 1000, [0.9, 0.1, 0.5])

ga.solve()

作者:Alex Yugew免費資源網

出處:http://www.cnblogs.com/biaoyu/gew免費資源網