天天看點

matlab目标檢測yolo,YOLO目标檢測快速上手

介紹

matlab目标檢測yolo,YOLO目标檢測快速上手

YOLO是基于深度學習端到端的實時目标檢測系統,YOLO将目标區域預測和目标類别預測整合于單個神經網絡模型中,實作在準确率較高的情況下快速目标檢測與識别,更加适合現場應用環境。本案例,我們快速實作一個視訊目标檢測功能,實作的具體原理我們将在單獨的文章中詳細介紹。

下載下傳編譯

我們首先下載下傳Darknet開發架構,Darknet開發架構是YOLO大神級作者自己用C語言編寫的開發架構,支援GPU加速,有兩種下載下傳方式:

git clone https://github.com/pjreddie/darknet

matlab目标檢測yolo,YOLO目标檢測快速上手

下載下傳後,完整的檔案内容,如下圖所示:

matlab目标檢測yolo,YOLO目标檢測快速上手

編譯:

cd darknet

# 編譯

make

matlab目标檢測yolo,YOLO目标檢測快速上手

編譯後的檔案内容,如下圖所示:

matlab目标檢測yolo,YOLO目标檢測快速上手

下載下傳權重檔案

我們這裡下載下傳的是“yolov3”版本,大小是200多M,“yolov3-tiny”比較小,30多M。

wget https://pjreddie.com/media/files/yolov3.weights

下載下傳權重檔案後,檔案内容如下圖所示:

matlab目标檢測yolo,YOLO目标檢測快速上手

上圖中的“yolov3-tiny.weights”,"yolov2-tiny.weights"是我單獨另下載下傳的。

C語言預測

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

matlab目标檢測yolo,YOLO目标檢測快速上手

如圖所示,我們已經預測出三種類别以及對應的機率值。模型輸出的照片位于darknet根目錄,名字是“predictions.jpg”,如下圖所示:

matlab目标檢測yolo,YOLO目标檢測快速上手

讓我們打開模型輸出照片看下:

matlab目标檢測yolo,YOLO目标檢測快速上手

Python語言預測

我們首先需要将“darknet”檔案夾内的“libdarknet.so”檔案移動到“darknet/python”内,完成後如下圖所示:

matlab目标檢測yolo,YOLO目标檢測快速上手

我們将使用Darknet内置的“darknet.py”,進行預測。預測之前,我們需要對檔案進行修改:

matlab目标檢測yolo,YOLO目标檢測快速上手

預設py檔案基于python2.0,是以對于python3.0及以上需要修改print

由于涉及到python和C之間的傳值,是以字元串内容需要轉碼

使用絕對路徑

修改完成後,如下圖所示:

matlab目标檢測yolo,YOLO目标檢測快速上手

打開“darknet/cfg/coco.data”檔案,将“names”也改為絕對路徑(截圖内沒有修改,讀者根據自己的實際路徑修改):

matlab目标檢測yolo,YOLO目标檢測快速上手

我們可以開始預測了,首先進入“darknet/python”然後執行“darknet.py”檔案即可:

matlab目标檢測yolo,YOLO目标檢測快速上手

結果如下圖所示:

matlab目标檢測yolo,YOLO目标檢測快速上手

對模型輸出的結果做個簡單的說明,如:

# 分别是:類别,識别機率,識别物體的X坐标,識别物體的Y坐标,識别物體的長度,識别物體的高度

(b'dog', 0.999338686466217, (224.18377685546875, 378.4237060546875, 178.60214233398438, 328.1665954589844)

視訊檢測

from ctypes import *

import random

import cv2

import numpy as np

def sample(probs):

s = sum(probs)

probs = [a/s for a in probs]

r = random.uniform(0, 1)

for i in range(len(probs)):

r = r - probs[i]

if r <= 0:

return i

return len(probs)-1

def c_array(ctype, values):

arr = (ctype*len(values))()

arr[:] = values

return arr

class BOX(Structure):

_fields_ = [("x", c_float),

("y", c_float),

("w", c_float),

("h", c_float)]

class DETECTION(Structure):

_fields_ = [("bbox", BOX),

("classes", c_int),

("prob", POINTER(c_float)),

("mask", POINTER(c_float)),

("objectness", c_float),

("sort_class", c_int)]

class IMAGE(Structure):

_fields_ = [("w", c_int),

("h", c_int),

("c", c_int),

("data", POINTER(c_float))]

class METADATA(Structure):

_fields_ = [("classes", c_int),

("names", POINTER(c_char_p))]

lib = CDLL("../python/libdarknet.so", RTLD_GLOBAL)

lib.network_width.argtypes = [c_void_p]

lib.network_width.restype = c_int

lib.network_height.argtypes = [c_void_p]

lib.network_height.restype = c_int

predict = lib.network_predict

predict.argtypes = [c_void_p, POINTER(c_float)]

predict.restype = POINTER(c_float)

set_gpu = lib.cuda_set_device

set_gpu.argtypes = [c_int]

make_image = lib.make_image

make_image.argtypes = [c_int, c_int, c_int]

make_image.restype = IMAGE

get_network_boxes = lib.get_network_boxes

get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)]

get_network_boxes.restype = POINTER(DETECTION)

make_network_boxes = lib.make_network_boxes

make_network_boxes.argtypes = [c_void_p]

make_network_boxes.restype = POINTER(DETECTION)

free_detections = lib.free_detections

free_detections.argtypes = [POINTER(DETECTION), c_int]

free_ptrs = lib.free_ptrs

free_ptrs.argtypes = [POINTER(c_void_p), c_int]

network_predict = lib.network_predict

network_predict.argtypes = [c_void_p, POINTER(c_float)]

reset_rnn = lib.reset_rnn

reset_rnn.argtypes = [c_void_p]

load_net = lib.load_network

load_net.argtypes = [c_char_p, c_char_p, c_int]

load_net.restype = c_void_p

do_nms_obj = lib.do_nms_obj

do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

do_nms_sort = lib.do_nms_sort

do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

free_image = lib.free_image

free_image.argtypes = [IMAGE]

letterbox_image = lib.letterbox_image

letterbox_image.argtypes = [IMAGE, c_int, c_int]

letterbox_image.restype = IMAGE

load_meta = lib.get_metadata

lib.get_metadata.argtypes = [c_char_p]

lib.get_metadata.restype = METADATA

load_image = lib.load_image_color

load_image.argtypes = [c_char_p, c_int, c_int]

load_image.restype = IMAGE

rgbgr_image = lib.rgbgr_image

rgbgr_image.argtypes = [IMAGE]

predict_image = lib.network_predict_image

predict_image.argtypes = [c_void_p, IMAGE]

predict_image.restype = POINTER(c_float)

def convertBack(x, y, w, h):

xmin = int(round(x - (w / 2)))

xmax = int(round(x + (w / 2)))

ymin = int(round(y - (h / 2)))

ymax = int(round(y + (h / 2)))

return xmin, ymin, xmax, ymax

def array_to_image(arr):

# need to return old values to avoid python freeing memory

arr = arr.transpose(2,0,1)

c, h, w = arr.shape[0:3]

arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0

data = arr.ctypes.data_as(POINTER(c_float))

im = IMAGE(w,h,c,data)

return im, arr

def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):

im, image = array_to_image(image)

rgbgr_image(im)

num = c_int(0)

pnum = pointer(num)

predict_image(net, im)

dets = get_network_boxes(net, im.w, im.h, thresh,

hier_thresh, None, 0, pnum)

num = pnum[0]

if nms: do_nms_obj(dets, num, meta.classes, nms)

res = []

for j in range(num):

a = dets[j].prob[0:meta.classes]

if any(a):

ai = np.array(a).nonzero()[0]

for i in ai:

b = dets[j].bbox

res.append((meta.names[i], dets[j].prob[i],

(b.x, b.y, b.w, b.h)))

res = sorted(res, key=lambda x: -x[1])

if isinstance(image, bytes): free_image(im)

free_detections(dets, num)

return res

if __name__ == "__main__":

cap = cv2.VideoCapture(0)

ret, img = cap.read()

fps = cap.get(cv2.CAP_PROP_FPS)

net = load_net(b"/Users/xiaomingtai/darknet/cfg/yolov2-tiny.cfg", b"/Users/xiaomingtai/darknet/yolov2-tiny.weights", 0)

meta = load_meta(b"/Users/xiaomingtai/darknet/cfg/coco.data")

cv2.namedWindow("img", cv2.WINDOW_NORMAL)

while(True):

ret, img = cap.read()

if ret:

r = detect(net, meta, img)

for i in r:

x, y, w, h = i[2][0], i[2][17], i[2][18], i[2][19]

xmin, ymin, xmax, ymax = convertBack(float(x), float(y), float(w), float(h))

pt1 = (xmin, ymin)

pt2 = (xmax, ymax)

cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)

cv2.putText(img, i[0].decode() + " [" + str(round(i[1] * 100, 2)) + "]", (pt1[0], pt1[1] + 20), cv2.FONT_HERSHEY_SIMPLEX, 1, [0, 255, 0], 4)

cv2.imshow("img", img)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

模型輸出結果:

matlab目标檢測yolo,YOLO目标檢測快速上手

模型視訊檢測結果:

matlab目标檢測yolo,YOLO目标檢測快速上手

沒有GPU的條件下還是不要選擇yolov3了,很慢。

總結

本篇文章主要是YOLO快速上手,我們通過很少的代碼就能實作不錯的目标檢測。當然,想熟練掌握YOLO,了解背後的原理是十分必要的,下篇文章将會重點介紹YOLO原理。