聚類是一種無監督的學習,将相似的對象放到同一簇中,有點像是全自動分類,簇内的對象越相似,簇間的對象差别越大,則聚類效果越好。本文主要為大家詳細介紹了python實作kMeans算法,具有一定的參考價值,感興趣的小夥伴們可以參考一下,希望能幫助到大家。
1、k均值聚類算法
k均值聚類将資料分為k個簇,每個簇通過其質心,即簇中所有點的中心來描述。首先随機确定k個初始點作為質心,然後将資料集配置設定到距離最近的簇中。然後将每個簇的質心更新為所有資料集的平均值。然後再進行第二次劃分資料集,直到聚類結果不再變化為止。
僞代碼為
随機建立k個簇質心
當任意一個點的簇配置設定發生改變時:
對資料集中的每個資料點:
對每個質心:
計算資料集到質心的距離
将資料集配置設定到最近距離質心對應的簇
對每一個簇,計算簇中所有點的均值并将均值作為質心
python實作
import numpy as np
import matplotlib.pyplot as plt
def loadDataSet(fileName):
dataMat = []
with open(fileName) as f:
for line in f.readlines():
line = line.strip().split('\t')
dataMat.append(line)
dataMat = np.array(dataMat).astype(np.float32)
return dataMat
def distEclud(vecA,vecB):
return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
m = np.shape(dataSet)[1]
center = np.mat(np.ones((k,m)))
for i in range(m):
centmin = min(dataSet[:,i])
centmax = max(dataSet[:,i])
center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
m = np.shape(dataSet)[0]
clusterAssment = np.mat(np.zeros((m,2)))
centroids = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = np.inf
minIndex = -1
for j in range(k):
distJI = distMeans(dataSet[i,:],centroids[j,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
for cent in range(k):
ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
centroids[cent,:] = np.mean(ptsInClust,axis = 0)
return centroids,clusterAssment
data = loadDataSet('testSet.txt')
muCentroids, clusterAssing = kMeans(data,4)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A)
plt.show()
print(clusterAssing)
2、二分k均值算法
K均值算法可能會收斂到局部最小值,而非全局最小。一種用于度量聚類效果的名額為誤差平方和(SSE)。因為取了平方,更加重視原理中心的點。為了克服k均值算法可能會收斂到局部最小值的問題,有人提出來二分k均值算法。
首先将所有點作為一個簇,然後将該簇一分為二,然後選擇所有簇中對其劃分能夠最大程度減低SSE的值的簇,直到滿足指定簇數為止。
僞代碼
将所有點看成一個簇
計算SSE
while 當簇數目小于k時:
for 每一個簇:
計算總誤差
在給定的簇上進行k均值聚類(k=2)
計算将該簇一分為二的總誤差
選擇使得誤差最小的那個簇進行劃分操作
python實作
import numpy as np
import matplotlib.pyplot as plt
def loadDataSet(fileName):
dataMat = []
with open(fileName) as f:
for line in f.readlines():
line = line.strip().split('\t')
dataMat.append(line)
dataMat = np.array(dataMat).astype(np.float32)
return dataMat
def distEclud(vecA,vecB):
return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
m = np.shape(dataSet)[1]
center = np.mat(np.ones((k,m)))
for i in range(m):
centmin = min(dataSet[:,i])
centmax = max(dataSet[:,i])
center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
m = np.shape(dataSet)[0]
clusterAssment = np.mat(np.zeros((m,2)))
centroids = createCent(dataSet,k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):
minDist = np.inf
minIndex = -1
for j in range(k):
distJI = distMeans(dataSet[i,:],centroids[j,:])
if distJI < minDist:
minDist = distJI
minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
for cent in range(k):
ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
centroids[cent,:] = np.mean(ptsInClust,axis = 0)
return centroids,clusterAssment
def biKmeans(dataSet,k,distMeans = distEclud):
m = np.shape(dataSet)[0]
clusterAssment = np.mat(np.zeros((m,2)))
centroid0 = np.mean(dataSet,axis=0).tolist()
centList = [centroid0]
for j in range(m):
clusterAssment[j,1] = distMeans(dataSet[j,:],np.mat(centroid0))**2
while (len(centList)
lowestSSE = np.inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:,0].A == i)[0],:]
centroidMat,splitClustAss = kMeans(ptsInCurrCluster,2,distMeans)
sseSplit = np.sum(splitClustAss[:,1])
sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A != i)[0],1])
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat.copy()
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
print('the best cent to split is ',bestCentToSplit)
# print('the len of the bestClust')
bestClustAss[np.nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
bestClustAss[np.nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
clusterAssment[np.nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] = bestClustAss.copy()
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
centList.append(bestNewCents[1,:].tolist()[0])
return np.mat(centList),clusterAssment
data = loadDataSet('testSet2.txt')
muCentroids, clusterAssing = biKmeans(data,3)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A,cmap=plt.cm.Paired)
ax.scatter(muCentroids[:,0],muCentroids[:,1])
plt.show()
print(clusterAssing)
print(muCentroids)
代碼及資料集下載下傳:K-means
相關推薦:
以上就是python實作kMeans算法的詳解的詳細内容,更多請關注php中文網其它相關文章!

本文原創釋出php中文網,轉載請注明出處,感謝您的尊重!