代碼示例
import numpy as np
from scipy.stats import norm
from scipy import stats
from matplotlib import pyplot as plt
import seaborn as sns
def distribution(data):
sns.distplot(data, fit=norm,
kde_kws={"label": "KDE"})
(mu, sigma) = norm.fit(data)
# print( '\n mu = {:.2f} and sigma = {:.2f}\n'.format(mu, sigma))
skew = stats.skew(data)
kurtosis = stats.kurtosis(data)
# print( '\n skew = {:.2f} and kurt = {:.2f}\n'.format(skew,kurtosis))
print('長度:',len(data),'\n','均值:',mu,'\n','标準差:',sigma,'\n','偏度:',skew,'\n','峰度:',kurtosis,'\n')
plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma),'KED','Histogram'],loc='best')
plt.ylabel('Frequency')
plt.title('Distribution')
distribution(ts01)
長度:2398
均值: 4113.451905754795
标準差: 437.0188164032393
偏度:-0.08015885063004205
峰度: -1.2589846224956012
